Evaluate
26-7d
Expand
26-7d
Share
Copied to clipboard
d^{2}-2d-5d+10-\left(d-4\right)\left(d+4\right)
Apply the distributive property by multiplying each term of d-5 by each term of d-2.
d^{2}-7d+10-\left(d-4\right)\left(d+4\right)
Combine -2d and -5d to get -7d.
d^{2}-7d+10-\left(d^{2}-4^{2}\right)
Consider \left(d-4\right)\left(d+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
d^{2}-7d+10-\left(d^{2}-16\right)
Calculate 4 to the power of 2 and get 16.
d^{2}-7d+10-d^{2}-\left(-16\right)
To find the opposite of d^{2}-16, find the opposite of each term.
d^{2}-7d+10-d^{2}+16
The opposite of -16 is 16.
-7d+10+16
Combine d^{2} and -d^{2} to get 0.
-7d+26
Add 10 and 16 to get 26.
d^{2}-2d-5d+10-\left(d-4\right)\left(d+4\right)
Apply the distributive property by multiplying each term of d-5 by each term of d-2.
d^{2}-7d+10-\left(d-4\right)\left(d+4\right)
Combine -2d and -5d to get -7d.
d^{2}-7d+10-\left(d^{2}-4^{2}\right)
Consider \left(d-4\right)\left(d+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
d^{2}-7d+10-\left(d^{2}-16\right)
Calculate 4 to the power of 2 and get 16.
d^{2}-7d+10-d^{2}-\left(-16\right)
To find the opposite of d^{2}-16, find the opposite of each term.
d^{2}-7d+10-d^{2}+16
The opposite of -16 is 16.
-7d+10+16
Combine d^{2} and -d^{2} to get 0.
-7d+26
Add 10 and 16 to get 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}