Solve for d
d=\frac{\sqrt{2}}{2}+3\approx 3.707106781
d=-\frac{\sqrt{2}}{2}+3\approx 2.292893219
Share
Copied to clipboard
\left(d-3\right)^{2}-\frac{1}{2}+\frac{1}{2}=\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
\left(d-3\right)^{2}=\frac{1}{2}
Subtracting \frac{1}{2} from itself leaves 0.
d-3=\frac{\sqrt{2}}{2} d-3=-\frac{\sqrt{2}}{2}
Take the square root of both sides of the equation.
d-3-\left(-3\right)=\frac{\sqrt{2}}{2}-\left(-3\right) d-3-\left(-3\right)=-\frac{\sqrt{2}}{2}-\left(-3\right)
Add 3 to both sides of the equation.
d=\frac{\sqrt{2}}{2}-\left(-3\right) d=-\frac{\sqrt{2}}{2}-\left(-3\right)
Subtracting -3 from itself leaves 0.
d=\frac{\sqrt{2}}{2}+3
Subtract -3 from \frac{\sqrt{2}}{2}.
d=-\frac{\sqrt{2}}{2}+3
Subtract -3 from -\frac{\sqrt{2}}{2}.
d=\frac{\sqrt{2}}{2}+3 d=-\frac{\sqrt{2}}{2}+3
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}