Evaluate
2\left(c^{2}-5c+7\right)
Expand
2c^{2}-10c+14
Share
Copied to clipboard
c^{2}-2c-c+2+\left(c-3\right)\left(c-4\right)
Apply the distributive property by multiplying each term of c-1 by each term of c-2.
c^{2}-3c+2+\left(c-3\right)\left(c-4\right)
Combine -2c and -c to get -3c.
c^{2}-3c+2+c^{2}-4c-3c+12
Apply the distributive property by multiplying each term of c-3 by each term of c-4.
c^{2}-3c+2+c^{2}-7c+12
Combine -4c and -3c to get -7c.
2c^{2}-3c+2-7c+12
Combine c^{2} and c^{2} to get 2c^{2}.
2c^{2}-10c+2+12
Combine -3c and -7c to get -10c.
2c^{2}-10c+14
Add 2 and 12 to get 14.
c^{2}-2c-c+2+\left(c-3\right)\left(c-4\right)
Apply the distributive property by multiplying each term of c-1 by each term of c-2.
c^{2}-3c+2+\left(c-3\right)\left(c-4\right)
Combine -2c and -c to get -3c.
c^{2}-3c+2+c^{2}-4c-3c+12
Apply the distributive property by multiplying each term of c-3 by each term of c-4.
c^{2}-3c+2+c^{2}-7c+12
Combine -4c and -3c to get -7c.
2c^{2}-3c+2-7c+12
Combine c^{2} and c^{2} to get 2c^{2}.
2c^{2}-10c+2+12
Combine -3c and -7c to get -10c.
2c^{2}-10c+14
Add 2 and 12 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}