( c ^ { 2 } \times a ^ { 2 } = b a ^ { 2 }
Solve for b (complex solution)
\left\{\begin{matrix}\\b=c^{2}\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&a=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=c^{2}\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&a=0\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&b=c^{2}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&b=c^{2}\end{matrix}\right.
Share
Copied to clipboard
ba^{2}=c^{2}\times a^{2}
Swap sides so that all variable terms are on the left hand side.
a^{2}b=a^{2}c^{2}
The equation is in standard form.
\frac{a^{2}b}{a^{2}}=\frac{a^{2}c^{2}}{a^{2}}
Divide both sides by a^{2}.
b=\frac{a^{2}c^{2}}{a^{2}}
Dividing by a^{2} undoes the multiplication by a^{2}.
b=c^{2}
Divide c^{2}a^{2} by a^{2}.
ba^{2}=c^{2}\times a^{2}
Swap sides so that all variable terms are on the left hand side.
a^{2}b=a^{2}c^{2}
The equation is in standard form.
\frac{a^{2}b}{a^{2}}=\frac{a^{2}c^{2}}{a^{2}}
Divide both sides by a^{2}.
b=\frac{a^{2}c^{2}}{a^{2}}
Dividing by a^{2} undoes the multiplication by a^{2}.
b=c^{2}
Divide c^{2}a^{2} by a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}