Evaluate
\left(9d-2c\right)\left(c+2d\right)
Expand
18d^{2}+5cd-2c^{2}
Share
Copied to clipboard
c^{2}+4cd+4d^{2}-\left(c+2d\right)\left(3c-7d\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(c+2d\right)^{2}.
c^{2}+4cd+4d^{2}-\left(3c^{2}-cd-14d^{2}\right)
Use the distributive property to multiply c+2d by 3c-7d and combine like terms.
c^{2}+4cd+4d^{2}-3c^{2}+cd+14d^{2}
To find the opposite of 3c^{2}-cd-14d^{2}, find the opposite of each term.
-2c^{2}+4cd+4d^{2}+cd+14d^{2}
Combine c^{2} and -3c^{2} to get -2c^{2}.
-2c^{2}+5cd+4d^{2}+14d^{2}
Combine 4cd and cd to get 5cd.
-2c^{2}+5cd+18d^{2}
Combine 4d^{2} and 14d^{2} to get 18d^{2}.
c^{2}+4cd+4d^{2}-\left(c+2d\right)\left(3c-7d\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(c+2d\right)^{2}.
c^{2}+4cd+4d^{2}-\left(3c^{2}-cd-14d^{2}\right)
Use the distributive property to multiply c+2d by 3c-7d and combine like terms.
c^{2}+4cd+4d^{2}-3c^{2}+cd+14d^{2}
To find the opposite of 3c^{2}-cd-14d^{2}, find the opposite of each term.
-2c^{2}+4cd+4d^{2}+cd+14d^{2}
Combine c^{2} and -3c^{2} to get -2c^{2}.
-2c^{2}+5cd+4d^{2}+14d^{2}
Combine 4cd and cd to get 5cd.
-2c^{2}+5cd+18d^{2}
Combine 4d^{2} and 14d^{2} to get 18d^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}