Solve for a
a=b-\frac{4}{m}
m\neq 0
Solve for b
b=a+\frac{4}{m}
m\neq 0
Share
Copied to clipboard
bm-am=4
Use the distributive property to multiply b-a by m.
-am=4-bm
Subtract bm from both sides.
\left(-m\right)a=4-bm
The equation is in standard form.
\frac{\left(-m\right)a}{-m}=\frac{4-bm}{-m}
Divide both sides by -m.
a=\frac{4-bm}{-m}
Dividing by -m undoes the multiplication by -m.
a=b-\frac{4}{m}
Divide 4-bm by -m.
bm-am=4
Use the distributive property to multiply b-a by m.
bm=4+am
Add am to both sides.
mb=am+4
The equation is in standard form.
\frac{mb}{m}=\frac{am+4}{m}
Divide both sides by m.
b=\frac{am+4}{m}
Dividing by m undoes the multiplication by m.
b=a+\frac{4}{m}
Divide 4+am by m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}