Solve for b
b\in \mathrm{R}
Share
Copied to clipboard
b^{2}-4b+4-4\times 1\left(b-3\right)\geq 0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(b-2\right)^{2}.
b^{2}-4b+4-4\left(b-3\right)\geq 0
Multiply 4 and 1 to get 4.
b^{2}-4b+4-4b+12\geq 0
Use the distributive property to multiply -4 by b-3.
b^{2}-8b+4+12\geq 0
Combine -4b and -4b to get -8b.
b^{2}-8b+16\geq 0
Add 4 and 12 to get 16.
b^{2}-8b+16=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\times 16}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -8 for b, and 16 for c in the quadratic formula.
b=\frac{8±0}{2}
Do the calculations.
b=4
Solutions are the same.
\left(b-4\right)^{2}\geq 0
Rewrite the inequality by using the obtained solutions.
b\in \mathrm{R}
Inequality holds for b\in \mathrm{R}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}