Skip to main content
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

b^{2}+a^{2}-2ab+b^{2}=2\left(a^{2}+b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
2b^{2}+a^{2}-2ab=2\left(a^{2}+b^{2}\right)
Combine b^{2} and b^{2} to get 2b^{2}.
2b^{2}+a^{2}-2ab=2a^{2}+2b^{2}
Use the distributive property to multiply 2 by a^{2}+b^{2}.
2b^{2}+a^{2}-2ab-2b^{2}=2a^{2}
Subtract 2b^{2} from both sides.
a^{2}-2ab=2a^{2}
Combine 2b^{2} and -2b^{2} to get 0.
-2ab=2a^{2}-a^{2}
Subtract a^{2} from both sides.
-2ab=a^{2}
Combine 2a^{2} and -a^{2} to get a^{2}.
\left(-2a\right)b=a^{2}
The equation is in standard form.
\frac{\left(-2a\right)b}{-2a}=\frac{a^{2}}{-2a}
Divide both sides by -2a.
b=\frac{a^{2}}{-2a}
Dividing by -2a undoes the multiplication by -2a.
b=-\frac{a}{2}
Divide a^{2} by -2a.
b^{2}+a^{2}-2ab+b^{2}=2\left(a^{2}+b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
2b^{2}+a^{2}-2ab=2\left(a^{2}+b^{2}\right)
Combine b^{2} and b^{2} to get 2b^{2}.
2b^{2}+a^{2}-2ab=2a^{2}+2b^{2}
Use the distributive property to multiply 2 by a^{2}+b^{2}.
2b^{2}+a^{2}-2ab-2b^{2}=2a^{2}
Subtract 2b^{2} from both sides.
a^{2}-2ab=2a^{2}
Combine 2b^{2} and -2b^{2} to get 0.
-2ab=2a^{2}-a^{2}
Subtract a^{2} from both sides.
-2ab=a^{2}
Combine 2a^{2} and -a^{2} to get a^{2}.
\left(-2a\right)b=a^{2}
The equation is in standard form.
\frac{\left(-2a\right)b}{-2a}=\frac{a^{2}}{-2a}
Divide both sides by -2a.
b=\frac{a^{2}}{-2a}
Dividing by -2a undoes the multiplication by -2a.
b=-\frac{a}{2}
Divide a^{2} by -2a.