Evaluate
1-2b-b^{2}
Expand
1-2b-b^{2}
Share
Copied to clipboard
b^{2}\left(-b\right)-b+\left(-b+1\right)\left(1-b^{2}\right)
Use the distributive property to multiply b^{2}+1 by -b.
b^{2}\left(-b\right)-b-b-\left(-b\right)b^{2}+1-b^{2}
Use the distributive property to multiply -b+1 by 1-b^{2}.
b^{2}\left(-b\right)-b-b+bb^{2}+1-b^{2}
Multiply -1 and -1 to get 1.
b^{2}\left(-b\right)-b-b+b^{3}+1-b^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
b^{2}\left(-b\right)+2\left(-b\right)+b^{3}+1-b^{2}
Combine -b and -b to get 2\left(-b\right).
b^{3}\left(-1\right)+2\left(-1\right)b+b^{3}+1-b^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
b^{3}\left(-1\right)-2b+b^{3}+1-b^{2}
Multiply 2 and -1 to get -2.
-2b+1-b^{2}
Combine b^{3}\left(-1\right) and b^{3} to get 0.
b^{2}\left(-b\right)-b+\left(-b+1\right)\left(1-b^{2}\right)
Use the distributive property to multiply b^{2}+1 by -b.
b^{2}\left(-b\right)-b-b-\left(-b\right)b^{2}+1-b^{2}
Use the distributive property to multiply -b+1 by 1-b^{2}.
b^{2}\left(-b\right)-b-b+bb^{2}+1-b^{2}
Multiply -1 and -1 to get 1.
b^{2}\left(-b\right)-b-b+b^{3}+1-b^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
b^{2}\left(-b\right)+2\left(-b\right)+b^{3}+1-b^{2}
Combine -b and -b to get 2\left(-b\right).
b^{3}\left(-1\right)+2\left(-1\right)b+b^{3}+1-b^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
b^{3}\left(-1\right)-2b+b^{3}+1-b^{2}
Multiply 2 and -1 to get -2.
-2b+1-b^{2}
Combine b^{3}\left(-1\right) and b^{3} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}