Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

b^{2}-4-\left(b+2\right)^{2}
Consider \left(b+2\right)\left(b-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
b^{2}-4-\left(b^{2}+4b+4\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(b+2\right)^{2}.
b^{2}-4-b^{2}-4b-4
To find the opposite of b^{2}+4b+4, find the opposite of each term.
-4-4b-4
Combine b^{2} and -b^{2} to get 0.
-8-4b
Subtract 4 from -4 to get -8.
b^{2}-4-\left(b+2\right)^{2}
Consider \left(b+2\right)\left(b-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
b^{2}-4-\left(b^{2}+4b+4\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(b+2\right)^{2}.
b^{2}-4-b^{2}-4b-4
To find the opposite of b^{2}+4b+4, find the opposite of each term.
-4-4b-4
Combine b^{2} and -b^{2} to get 0.
-8-4b
Subtract 4 from -4 to get -8.