Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{-4x^{2}-4x+3b-6}{x\left(2x+b\right)}\text{, }&x\neq -\frac{b}{2}\text{ and }x\neq 0\\a\in \mathrm{C}\text{, }&\left(b=2\text{ and }x=0\right)\text{ or }\left(x=-1\text{ and }b=2\right)\text{ or }\left(x=-\frac{3}{2}\text{ and }b=3\right)\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{2\left(ax^{2}-2x^{2}-2x-3\right)}{ax+3}\text{, }&x=0\text{ or }a\neq -\frac{3}{x}\\b\in \mathrm{C}\text{, }&\left(a=3\text{ and }x=-1\right)\text{ or }\left(a=2\text{ and }x=-\frac{3}{2}\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{-4x^{2}-4x+3b-6}{x\left(2x+b\right)}\text{, }&x\neq -\frac{b}{2}\text{ and }x\neq 0\\a\in \mathrm{R}\text{, }&\left(b=2\text{ and }x=0\right)\text{ or }\left(x=-1\text{ and }b=2\right)\text{ or }\left(x=-\frac{3}{2}\text{ and }b=3\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{2\left(ax^{2}-2x^{2}-2x-3\right)}{ax+3}\text{, }&x=0\text{ or }a\neq -\frac{3}{x}\\b\in \mathrm{R}\text{, }&\left(a=3\text{ and }x=-1\right)\text{ or }\left(a=2\text{ and }x=-\frac{3}{2}\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
2ax^{2}+axb+6x+3b=4x^{2}+10x+6
Use the distributive property to multiply ax+3 by 2x+b.
2ax^{2}+axb+3b=4x^{2}+10x+6-6x
Subtract 6x from both sides.
2ax^{2}+axb+3b=4x^{2}+4x+6
Combine 10x and -6x to get 4x.
2ax^{2}+axb=4x^{2}+4x+6-3b
Subtract 3b from both sides.
\left(2x^{2}+xb\right)a=4x^{2}+4x+6-3b
Combine all terms containing a.
\left(2x^{2}+bx\right)a=4x^{2}+4x-3b+6
The equation is in standard form.
\frac{\left(2x^{2}+bx\right)a}{2x^{2}+bx}=\frac{4x^{2}+4x-3b+6}{2x^{2}+bx}
Divide both sides by 2x^{2}+bx.
a=\frac{4x^{2}+4x-3b+6}{2x^{2}+bx}
Dividing by 2x^{2}+bx undoes the multiplication by 2x^{2}+bx.
a=\frac{4x^{2}+4x-3b+6}{x\left(2x+b\right)}
Divide 4x^{2}+4x+6-3b by 2x^{2}+bx.
2ax^{2}+axb+6x+3b=4x^{2}+10x+6
Use the distributive property to multiply ax+3 by 2x+b.
axb+6x+3b=4x^{2}+10x+6-2ax^{2}
Subtract 2ax^{2} from both sides.
axb+3b=4x^{2}+10x+6-2ax^{2}-6x
Subtract 6x from both sides.
axb+3b=4x^{2}+4x+6-2ax^{2}
Combine 10x and -6x to get 4x.
\left(ax+3\right)b=4x^{2}+4x+6-2ax^{2}
Combine all terms containing b.
\left(ax+3\right)b=6+4x+4x^{2}-2ax^{2}
The equation is in standard form.
\frac{\left(ax+3\right)b}{ax+3}=\frac{6+4x+4x^{2}-2ax^{2}}{ax+3}
Divide both sides by ax+3.
b=\frac{6+4x+4x^{2}-2ax^{2}}{ax+3}
Dividing by ax+3 undoes the multiplication by ax+3.
b=\frac{2\left(3+2x+2x^{2}-ax^{2}\right)}{ax+3}
Divide 4x^{2}+4x+6-2ax^{2} by ax+3.
2ax^{2}+axb+6x+3b=4x^{2}+10x+6
Use the distributive property to multiply ax+3 by 2x+b.
2ax^{2}+axb+3b=4x^{2}+10x+6-6x
Subtract 6x from both sides.
2ax^{2}+axb+3b=4x^{2}+4x+6
Combine 10x and -6x to get 4x.
2ax^{2}+axb=4x^{2}+4x+6-3b
Subtract 3b from both sides.
\left(2x^{2}+xb\right)a=4x^{2}+4x+6-3b
Combine all terms containing a.
\left(2x^{2}+bx\right)a=4x^{2}+4x-3b+6
The equation is in standard form.
\frac{\left(2x^{2}+bx\right)a}{2x^{2}+bx}=\frac{4x^{2}+4x-3b+6}{2x^{2}+bx}
Divide both sides by 2x^{2}+bx.
a=\frac{4x^{2}+4x-3b+6}{2x^{2}+bx}
Dividing by 2x^{2}+bx undoes the multiplication by 2x^{2}+bx.
a=\frac{4x^{2}+4x-3b+6}{x\left(2x+b\right)}
Divide 4x^{2}+4x+6-3b by 2x^{2}+bx.
2ax^{2}+axb+6x+3b=4x^{2}+10x+6
Use the distributive property to multiply ax+3 by 2x+b.
axb+6x+3b=4x^{2}+10x+6-2ax^{2}
Subtract 2ax^{2} from both sides.
axb+3b=4x^{2}+10x+6-2ax^{2}-6x
Subtract 6x from both sides.
axb+3b=4x^{2}+4x+6-2ax^{2}
Combine 10x and -6x to get 4x.
\left(ax+3\right)b=4x^{2}+4x+6-2ax^{2}
Combine all terms containing b.
\left(ax+3\right)b=6+4x+4x^{2}-2ax^{2}
The equation is in standard form.
\frac{\left(ax+3\right)b}{ax+3}=\frac{6+4x+4x^{2}-2ax^{2}}{ax+3}
Divide both sides by ax+3.
b=\frac{6+4x+4x^{2}-2ax^{2}}{ax+3}
Dividing by ax+3 undoes the multiplication by ax+3.
b=\frac{2\left(3+2x+2x^{2}-ax^{2}\right)}{ax+3}
Divide 4x^{2}+4x+6-2ax^{2} by ax+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}