Solve for a_1
\left\{\begin{matrix}a_{1}=\frac{28a_{4}d-20a_{4}-25}{4\left(a_{4}+7d\right)}\text{, }&a_{4}\neq -7d\\a_{1}\in \mathrm{R}\text{, }&a_{4}=-\frac{5}{2}\text{ and }d=\frac{5}{14}\end{matrix}\right.
Solve for a_4
\left\{\begin{matrix}a_{4}=-\frac{28a_{1}d+25}{4\left(a_{1}-7d+5\right)}\text{, }&a_{1}\neq 7d-5\\a_{4}\in \mathrm{R}\text{, }&d=\frac{5}{14}\text{ and }a_{1}=-\frac{5}{2}\end{matrix}\right.
Share
Copied to clipboard
a_{4}^{2}+5a_{4}+\frac{25}{4}=\left(a_{4}-a_{1}\right)\left(a_{4}+7d\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a_{4}+\frac{5}{2}\right)^{2}.
a_{4}^{2}+5a_{4}+\frac{25}{4}=a_{4}^{2}+7a_{4}d-a_{1}a_{4}-7a_{1}d
Use the distributive property to multiply a_{4}-a_{1} by a_{4}+7d.
a_{4}^{2}+7a_{4}d-a_{1}a_{4}-7a_{1}d=a_{4}^{2}+5a_{4}+\frac{25}{4}
Swap sides so that all variable terms are on the left hand side.
7a_{4}d-a_{1}a_{4}-7a_{1}d=a_{4}^{2}+5a_{4}+\frac{25}{4}-a_{4}^{2}
Subtract a_{4}^{2} from both sides.
7a_{4}d-a_{1}a_{4}-7a_{1}d=5a_{4}+\frac{25}{4}
Combine a_{4}^{2} and -a_{4}^{2} to get 0.
-a_{1}a_{4}-7a_{1}d=5a_{4}+\frac{25}{4}-7a_{4}d
Subtract 7a_{4}d from both sides.
\left(-a_{4}-7d\right)a_{1}=5a_{4}+\frac{25}{4}-7a_{4}d
Combine all terms containing a_{1}.
\left(-a_{4}-7d\right)a_{1}=\frac{25}{4}+5a_{4}-7a_{4}d
The equation is in standard form.
\frac{\left(-a_{4}-7d\right)a_{1}}{-a_{4}-7d}=\frac{\frac{25}{4}+5a_{4}-7a_{4}d}{-a_{4}-7d}
Divide both sides by -a_{4}-7d.
a_{1}=\frac{\frac{25}{4}+5a_{4}-7a_{4}d}{-a_{4}-7d}
Dividing by -a_{4}-7d undoes the multiplication by -a_{4}-7d.
a_{1}=-\frac{25+20a_{4}-28a_{4}d}{4\left(a_{4}+7d\right)}
Divide 5a_{4}+\frac{25}{4}-7a_{4}d by -a_{4}-7d.
a_{4}^{2}+5a_{4}+\frac{25}{4}=\left(a_{4}-a_{1}\right)\left(a_{4}+7d\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a_{4}+\frac{5}{2}\right)^{2}.
a_{4}^{2}+5a_{4}+\frac{25}{4}=a_{4}^{2}+7a_{4}d-a_{1}a_{4}-7a_{1}d
Use the distributive property to multiply a_{4}-a_{1} by a_{4}+7d.
a_{4}^{2}+5a_{4}+\frac{25}{4}-a_{4}^{2}=7a_{4}d-a_{1}a_{4}-7a_{1}d
Subtract a_{4}^{2} from both sides.
5a_{4}+\frac{25}{4}=7a_{4}d-a_{1}a_{4}-7a_{1}d
Combine a_{4}^{2} and -a_{4}^{2} to get 0.
5a_{4}+\frac{25}{4}-7a_{4}d=-a_{1}a_{4}-7a_{1}d
Subtract 7a_{4}d from both sides.
5a_{4}+\frac{25}{4}-7a_{4}d+a_{1}a_{4}=-7a_{1}d
Add a_{1}a_{4} to both sides.
5a_{4}-7a_{4}d+a_{1}a_{4}=-7a_{1}d-\frac{25}{4}
Subtract \frac{25}{4} from both sides.
\left(5-7d+a_{1}\right)a_{4}=-7a_{1}d-\frac{25}{4}
Combine all terms containing a_{4}.
\left(a_{1}-7d+5\right)a_{4}=-7a_{1}d-\frac{25}{4}
The equation is in standard form.
\frac{\left(a_{1}-7d+5\right)a_{4}}{a_{1}-7d+5}=\frac{-7a_{1}d-\frac{25}{4}}{a_{1}-7d+5}
Divide both sides by -7d+5+a_{1}.
a_{4}=\frac{-7a_{1}d-\frac{25}{4}}{a_{1}-7d+5}
Dividing by -7d+5+a_{1} undoes the multiplication by -7d+5+a_{1}.
a_{4}=-\frac{28a_{1}d+25}{4\left(a_{1}-7d+5\right)}
Divide -7a_{1}d-\frac{25}{4} by -7d+5+a_{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}