Solve for a_2 (complex solution)
\left\{\begin{matrix}a_{2}=-\frac{-a_{3}^{2}-16a_{3}+10a_{4}-4}{a_{4}+6}\text{, }&a_{4}\neq -6\\a_{2}\in \mathrm{C}\text{, }&a_{3}=-8\text{ and }a_{4}=-6\end{matrix}\right.
Solve for a_2
\left\{\begin{matrix}a_{2}=-\frac{-a_{3}^{2}-16a_{3}+10a_{4}-4}{a_{4}+6}\text{, }&a_{4}\neq -6\\a_{2}\in \mathrm{R}\text{, }&a_{3}=-8\text{ and }a_{4}=-6\end{matrix}\right.
Solve for a_3 (complex solution)
a_{3}=-\left(\sqrt{a_{2}+10}\sqrt{a_{4}+6}+8\right)
a_{3}=\sqrt{a_{2}+10}\sqrt{a_{4}+6}-8
Solve for a_3
a_{3}=-\left(\sqrt{\left(a_{2}+10\right)\left(a_{4}+6\right)}+8\right)
a_{3}=\sqrt{\left(a_{2}+10\right)\left(a_{4}+6\right)}-8\text{, }\left(a_{2}\geq -10\text{ and }a_{4}\geq -6\right)\text{ or }\left(a_{4}\leq -6\text{ and }a_{2}\leq -10\right)
Share
Copied to clipboard
a_{3}^{2}+16a_{3}+64=\left(a_{2}+10\right)\left(a_{4}+6\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a_{3}+8\right)^{2}.
a_{3}^{2}+16a_{3}+64=a_{2}a_{4}+6a_{2}+10a_{4}+60
Use the distributive property to multiply a_{2}+10 by a_{4}+6.
a_{2}a_{4}+6a_{2}+10a_{4}+60=a_{3}^{2}+16a_{3}+64
Swap sides so that all variable terms are on the left hand side.
a_{2}a_{4}+6a_{2}+60=a_{3}^{2}+16a_{3}+64-10a_{4}
Subtract 10a_{4} from both sides.
a_{2}a_{4}+6a_{2}=a_{3}^{2}+16a_{3}+64-10a_{4}-60
Subtract 60 from both sides.
a_{2}a_{4}+6a_{2}=a_{3}^{2}+16a_{3}+4-10a_{4}
Subtract 60 from 64 to get 4.
\left(a_{4}+6\right)a_{2}=a_{3}^{2}+16a_{3}+4-10a_{4}
Combine all terms containing a_{2}.
\left(a_{4}+6\right)a_{2}=a_{3}^{2}+16a_{3}-10a_{4}+4
The equation is in standard form.
\frac{\left(a_{4}+6\right)a_{2}}{a_{4}+6}=\frac{a_{3}^{2}+16a_{3}-10a_{4}+4}{a_{4}+6}
Divide both sides by a_{4}+6.
a_{2}=\frac{a_{3}^{2}+16a_{3}-10a_{4}+4}{a_{4}+6}
Dividing by a_{4}+6 undoes the multiplication by a_{4}+6.
a_{3}^{2}+16a_{3}+64=\left(a_{2}+10\right)\left(a_{4}+6\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a_{3}+8\right)^{2}.
a_{3}^{2}+16a_{3}+64=a_{2}a_{4}+6a_{2}+10a_{4}+60
Use the distributive property to multiply a_{2}+10 by a_{4}+6.
a_{2}a_{4}+6a_{2}+10a_{4}+60=a_{3}^{2}+16a_{3}+64
Swap sides so that all variable terms are on the left hand side.
a_{2}a_{4}+6a_{2}+60=a_{3}^{2}+16a_{3}+64-10a_{4}
Subtract 10a_{4} from both sides.
a_{2}a_{4}+6a_{2}=a_{3}^{2}+16a_{3}+64-10a_{4}-60
Subtract 60 from both sides.
a_{2}a_{4}+6a_{2}=a_{3}^{2}+16a_{3}+4-10a_{4}
Subtract 60 from 64 to get 4.
\left(a_{4}+6\right)a_{2}=a_{3}^{2}+16a_{3}+4-10a_{4}
Combine all terms containing a_{2}.
\left(a_{4}+6\right)a_{2}=a_{3}^{2}+16a_{3}-10a_{4}+4
The equation is in standard form.
\frac{\left(a_{4}+6\right)a_{2}}{a_{4}+6}=\frac{a_{3}^{2}+16a_{3}-10a_{4}+4}{a_{4}+6}
Divide both sides by a_{4}+6.
a_{2}=\frac{a_{3}^{2}+16a_{3}-10a_{4}+4}{a_{4}+6}
Dividing by a_{4}+6 undoes the multiplication by a_{4}+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}