Solve for a
\left\{\begin{matrix}a=\frac{d\left(2a_{1}+d\right)}{3a_{1}}\text{, }&a_{1}\neq 0\\a\in \mathrm{R}\text{, }&a_{1}=0\text{ and }d=0\end{matrix}\right.
Solve for a_1
\left\{\begin{matrix}a_{1}=-\frac{d^{2}}{2d-3a}\text{, }&d\neq \frac{3a}{2}\\a_{1}\in \mathrm{R}\text{, }&d=0\text{ and }a=0\end{matrix}\right.
Share
Copied to clipboard
a_{1}^{2}+2a_{1}d+d^{2}=a_{1}\left(a_{1}+3a\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a_{1}+d\right)^{2}.
a_{1}^{2}+2a_{1}d+d^{2}=a_{1}^{2}+3a_{1}a
Use the distributive property to multiply a_{1} by a_{1}+3a.
a_{1}^{2}+3a_{1}a=a_{1}^{2}+2a_{1}d+d^{2}
Swap sides so that all variable terms are on the left hand side.
3a_{1}a=a_{1}^{2}+2a_{1}d+d^{2}-a_{1}^{2}
Subtract a_{1}^{2} from both sides.
3a_{1}a=2a_{1}d+d^{2}
Combine a_{1}^{2} and -a_{1}^{2} to get 0.
\frac{3a_{1}a}{3a_{1}}=\frac{d\left(2a_{1}+d\right)}{3a_{1}}
Divide both sides by 3a_{1}.
a=\frac{d\left(2a_{1}+d\right)}{3a_{1}}
Dividing by 3a_{1} undoes the multiplication by 3a_{1}.
a_{1}^{2}+2a_{1}d+d^{2}=a_{1}\left(a_{1}+3a\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a_{1}+d\right)^{2}.
a_{1}^{2}+2a_{1}d+d^{2}=a_{1}^{2}+3a_{1}a
Use the distributive property to multiply a_{1} by a_{1}+3a.
a_{1}^{2}+2a_{1}d+d^{2}-a_{1}^{2}=3a_{1}a
Subtract a_{1}^{2} from both sides.
2a_{1}d+d^{2}=3a_{1}a
Combine a_{1}^{2} and -a_{1}^{2} to get 0.
2a_{1}d+d^{2}-3a_{1}a=0
Subtract 3a_{1}a from both sides.
2a_{1}d-3a_{1}a=-d^{2}
Subtract d^{2} from both sides. Anything subtracted from zero gives its negation.
\left(2d-3a\right)a_{1}=-d^{2}
Combine all terms containing a_{1}.
\frac{\left(2d-3a\right)a_{1}}{2d-3a}=-\frac{d^{2}}{2d-3a}
Divide both sides by 2d-3a.
a_{1}=-\frac{d^{2}}{2d-3a}
Dividing by 2d-3a undoes the multiplication by 2d-3a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}