Skip to main content
Solve for a
Tick mark Image
Solve for a_1
Tick mark Image

Similar Problems from Web Search

Share

a_{1}^{2}+2a_{1}d+d^{2}=a_{1}\left(a_{1}+3a\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a_{1}+d\right)^{2}.
a_{1}^{2}+2a_{1}d+d^{2}=a_{1}^{2}+3a_{1}a
Use the distributive property to multiply a_{1} by a_{1}+3a.
a_{1}^{2}+3a_{1}a=a_{1}^{2}+2a_{1}d+d^{2}
Swap sides so that all variable terms are on the left hand side.
3a_{1}a=a_{1}^{2}+2a_{1}d+d^{2}-a_{1}^{2}
Subtract a_{1}^{2} from both sides.
3a_{1}a=2a_{1}d+d^{2}
Combine a_{1}^{2} and -a_{1}^{2} to get 0.
\frac{3a_{1}a}{3a_{1}}=\frac{d\left(2a_{1}+d\right)}{3a_{1}}
Divide both sides by 3a_{1}.
a=\frac{d\left(2a_{1}+d\right)}{3a_{1}}
Dividing by 3a_{1} undoes the multiplication by 3a_{1}.
a_{1}^{2}+2a_{1}d+d^{2}=a_{1}\left(a_{1}+3a\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a_{1}+d\right)^{2}.
a_{1}^{2}+2a_{1}d+d^{2}=a_{1}^{2}+3a_{1}a
Use the distributive property to multiply a_{1} by a_{1}+3a.
a_{1}^{2}+2a_{1}d+d^{2}-a_{1}^{2}=3a_{1}a
Subtract a_{1}^{2} from both sides.
2a_{1}d+d^{2}=3a_{1}a
Combine a_{1}^{2} and -a_{1}^{2} to get 0.
2a_{1}d+d^{2}-3a_{1}a=0
Subtract 3a_{1}a from both sides.
2a_{1}d-3a_{1}a=-d^{2}
Subtract d^{2} from both sides. Anything subtracted from zero gives its negation.
\left(2d-3a\right)a_{1}=-d^{2}
Combine all terms containing a_{1}.
\frac{\left(2d-3a\right)a_{1}}{2d-3a}=-\frac{d^{2}}{2d-3a}
Divide both sides by 2d-3a.
a_{1}=-\frac{d^{2}}{2d-3a}
Dividing by 2d-3a undoes the multiplication by 2d-3a.