Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

az^{2}-bz^{2}-\left(a+b\right)x+2b=0
Use the distributive property to multiply a-b by z^{2}.
az^{2}-bz^{2}-\left(ax+bx\right)+2b=0
Use the distributive property to multiply a+b by x.
az^{2}-bz^{2}-ax-bx+2b=0
To find the opposite of ax+bx, find the opposite of each term.
az^{2}-ax-bx+2b=bz^{2}
Add bz^{2} to both sides. Anything plus zero gives itself.
az^{2}-ax+2b=bz^{2}+bx
Add bx to both sides.
az^{2}-ax=bz^{2}+bx-2b
Subtract 2b from both sides.
\left(z^{2}-x\right)a=bz^{2}+bx-2b
Combine all terms containing a.
\left(z^{2}-x\right)a=bx+bz^{2}-2b
The equation is in standard form.
\frac{\left(z^{2}-x\right)a}{z^{2}-x}=\frac{b\left(x+z^{2}-2\right)}{z^{2}-x}
Divide both sides by -x+z^{2}.
a=\frac{b\left(x+z^{2}-2\right)}{z^{2}-x}
Dividing by -x+z^{2} undoes the multiplication by -x+z^{2}.
az^{2}-bz^{2}-\left(a+b\right)x+2b=0
Use the distributive property to multiply a-b by z^{2}.
az^{2}-bz^{2}-\left(ax+bx\right)+2b=0
Use the distributive property to multiply a+b by x.
az^{2}-bz^{2}-ax-bx+2b=0
To find the opposite of ax+bx, find the opposite of each term.
-bz^{2}-ax-bx+2b=-az^{2}
Subtract az^{2} from both sides. Anything subtracted from zero gives its negation.
-bz^{2}-bx+2b=-az^{2}+ax
Add ax to both sides.
-bx-bz^{2}+2b=ax-az^{2}
Reorder the terms.
\left(-x-z^{2}+2\right)b=ax-az^{2}
Combine all terms containing b.
\left(2-z^{2}-x\right)b=ax-az^{2}
The equation is in standard form.
\frac{\left(2-z^{2}-x\right)b}{2-z^{2}-x}=\frac{a\left(x-z^{2}\right)}{2-z^{2}-x}
Divide both sides by -x-z^{2}+2.
b=\frac{a\left(x-z^{2}\right)}{2-z^{2}-x}
Dividing by -x-z^{2}+2 undoes the multiplication by -x-z^{2}+2.