Solve for a
\left\{\begin{matrix}a=-\frac{b\left(2-z^{2}-x\right)}{z^{2}-x}\text{, }&x\neq z^{2}\\a\in \mathrm{R}\text{, }&\left(b=0\text{ and }x=z^{2}\right)\text{ or }\left(x=1\text{ and }|z|=1\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{a\left(z^{2}-x\right)}{2-z^{2}-x}\text{, }&x\neq 2-z^{2}\\b\in \mathrm{R}\text{, }&\left(a=0\text{ and }x=2-z^{2}\right)\text{ or }\left(x=1\text{ and }|z|=1\right)\end{matrix}\right.
Share
Copied to clipboard
az^{2}-bz^{2}-\left(a+b\right)x+2b=0
Use the distributive property to multiply a-b by z^{2}.
az^{2}-bz^{2}-\left(ax+bx\right)+2b=0
Use the distributive property to multiply a+b by x.
az^{2}-bz^{2}-ax-bx+2b=0
To find the opposite of ax+bx, find the opposite of each term.
az^{2}-ax-bx+2b=bz^{2}
Add bz^{2} to both sides. Anything plus zero gives itself.
az^{2}-ax+2b=bz^{2}+bx
Add bx to both sides.
az^{2}-ax=bz^{2}+bx-2b
Subtract 2b from both sides.
\left(z^{2}-x\right)a=bz^{2}+bx-2b
Combine all terms containing a.
\left(z^{2}-x\right)a=bx+bz^{2}-2b
The equation is in standard form.
\frac{\left(z^{2}-x\right)a}{z^{2}-x}=\frac{b\left(x+z^{2}-2\right)}{z^{2}-x}
Divide both sides by -x+z^{2}.
a=\frac{b\left(x+z^{2}-2\right)}{z^{2}-x}
Dividing by -x+z^{2} undoes the multiplication by -x+z^{2}.
az^{2}-bz^{2}-\left(a+b\right)x+2b=0
Use the distributive property to multiply a-b by z^{2}.
az^{2}-bz^{2}-\left(ax+bx\right)+2b=0
Use the distributive property to multiply a+b by x.
az^{2}-bz^{2}-ax-bx+2b=0
To find the opposite of ax+bx, find the opposite of each term.
-bz^{2}-ax-bx+2b=-az^{2}
Subtract az^{2} from both sides. Anything subtracted from zero gives its negation.
-bz^{2}-bx+2b=-az^{2}+ax
Add ax to both sides.
-bx-bz^{2}+2b=ax-az^{2}
Reorder the terms.
\left(-x-z^{2}+2\right)b=ax-az^{2}
Combine all terms containing b.
\left(2-z^{2}-x\right)b=ax-az^{2}
The equation is in standard form.
\frac{\left(2-z^{2}-x\right)b}{2-z^{2}-x}=\frac{a\left(x-z^{2}\right)}{2-z^{2}-x}
Divide both sides by -x-z^{2}+2.
b=\frac{a\left(x-z^{2}\right)}{2-z^{2}-x}
Dividing by -x-z^{2}+2 undoes the multiplication by -x-z^{2}+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}