Evaluate
-b^{2}
Expand
-b^{2}
Share
Copied to clipboard
a^{3}+ab-ba^{2}-b^{2}-a\left(a^{2}-ab+b\right)
Use the distributive property to multiply a-b by a^{2}+b.
a^{3}+ab-ba^{2}-b^{2}-\left(a^{3}-ba^{2}+ab\right)
Use the distributive property to multiply a by a^{2}-ab+b.
a^{3}+ab-ba^{2}-b^{2}-a^{3}+ba^{2}-ab
To find the opposite of a^{3}-ba^{2}+ab, find the opposite of each term.
ab-ba^{2}-b^{2}+ba^{2}-ab
Combine a^{3} and -a^{3} to get 0.
ab-b^{2}-ab
Combine -ba^{2} and ba^{2} to get 0.
-b^{2}
Combine ab and -ab to get 0.
a^{3}+ab-ba^{2}-b^{2}-a\left(a^{2}-ab+b\right)
Use the distributive property to multiply a-b by a^{2}+b.
a^{3}+ab-ba^{2}-b^{2}-\left(a^{3}-ba^{2}+ab\right)
Use the distributive property to multiply a by a^{2}-ab+b.
a^{3}+ab-ba^{2}-b^{2}-a^{3}+ba^{2}-ab
To find the opposite of a^{3}-ba^{2}+ab, find the opposite of each term.
ab-ba^{2}-b^{2}+ba^{2}-ab
Combine a^{3} and -a^{3} to get 0.
ab-b^{2}-ab
Combine -ba^{2} and ba^{2} to get 0.
-b^{2}
Combine ab and -ab to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}