Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-2ab+b^{2}-\left(2a+b\right)\left(-b+2a\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
a^{2}-2ab+b^{2}-\left(2a\left(-b\right)+4a^{2}+b\left(-b\right)+2ba\right)
Use the distributive property to multiply 2a+b by -b+2a.
a^{2}-2ab+b^{2}-2a\left(-b\right)-4a^{2}-b\left(-b\right)-2ba
To find the opposite of 2a\left(-b\right)+4a^{2}+b\left(-b\right)+2ba, find the opposite of each term.
a^{2}-2ab+b^{2}+2ab-4a^{2}-b\left(-b\right)-2ba
Multiply -2 and -1 to get 2.
a^{2}+b^{2}-4a^{2}-b\left(-b\right)-2ba
Combine -2ab and 2ab to get 0.
-3a^{2}+b^{2}-b\left(-b\right)-2ba
Combine a^{2} and -4a^{2} to get -3a^{2}.
-3a^{2}+b^{2}+bb-2ba
Multiply -1 and -1 to get 1.
-3a^{2}+b^{2}+b^{2}-2ba
Multiply b and b to get b^{2}.
-3a^{2}+2b^{2}-2ba
Combine b^{2} and b^{2} to get 2b^{2}.
a^{2}-2ab+b^{2}-\left(2a+b\right)\left(-b+2a\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
a^{2}-2ab+b^{2}-\left(2a\left(-b\right)+4a^{2}+b\left(-b\right)+2ba\right)
Use the distributive property to multiply 2a+b by -b+2a.
a^{2}-2ab+b^{2}-2a\left(-b\right)-4a^{2}-b\left(-b\right)-2ba
To find the opposite of 2a\left(-b\right)+4a^{2}+b\left(-b\right)+2ba, find the opposite of each term.
a^{2}-2ab+b^{2}+2ab-4a^{2}-b\left(-b\right)-2ba
Multiply -2 and -1 to get 2.
a^{2}+b^{2}-4a^{2}-b\left(-b\right)-2ba
Combine -2ab and 2ab to get 0.
-3a^{2}+b^{2}-b\left(-b\right)-2ba
Combine a^{2} and -4a^{2} to get -3a^{2}.
-3a^{2}+b^{2}+bb-2ba
Multiply -1 and -1 to get 1.
-3a^{2}+b^{2}+b^{2}-2ba
Multiply b and b to get b^{2}.
-3a^{2}+2b^{2}-2ba
Combine b^{2} and b^{2} to get 2b^{2}.