Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{a\left(1-a\right)}{2a-\lambda -1}\text{, }&a\neq \frac{\lambda +1}{2}\\b\in \mathrm{C}\text{, }&\left(a=0\text{ and }\lambda =-1\right)\text{ or }\left(a=1\text{ and }\lambda =1\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{a\left(1-a\right)}{2a-\lambda -1}\text{, }&a\neq \frac{\lambda +1}{2}\\b\in \mathrm{R}\text{, }&\left(a=0\text{ and }\lambda =-1\right)\text{ or }\left(a=1\text{ and }\lambda =1\right)\end{matrix}\right.
Solve for a (complex solution)
a=-\frac{\sqrt{4b^{2}-4b\lambda +1}}{2}+b+\frac{1}{2}
a=\frac{\sqrt{4b^{2}-4b\lambda +1}}{2}+b+\frac{1}{2}
Solve for a
a=-\frac{\sqrt{4b^{2}-4b\lambda +1}}{2}+b+\frac{1}{2}
a=\frac{\sqrt{4b^{2}-4b\lambda +1}}{2}+b+\frac{1}{2}\text{, }b\geq \frac{\sqrt{\lambda ^{2}-1}+\lambda }{2}\text{ or }b\leq \frac{-\sqrt{\lambda ^{2}-1}+\lambda }{2}\text{ or }|\lambda |\leq 1
Share
Copied to clipboard
a-b+2ab=a^{2}+b\lambda
Add 2ab to both sides.
a-b+2ab-b\lambda =a^{2}
Subtract b\lambda from both sides.
-b+2ab-b\lambda =a^{2}-a
Subtract a from both sides.
\left(-1+2a-\lambda \right)b=a^{2}-a
Combine all terms containing b.
\left(2a-\lambda -1\right)b=a^{2}-a
The equation is in standard form.
\frac{\left(2a-\lambda -1\right)b}{2a-\lambda -1}=\frac{a\left(a-1\right)}{2a-\lambda -1}
Divide both sides by -1+2a-\lambda .
b=\frac{a\left(a-1\right)}{2a-\lambda -1}
Dividing by -1+2a-\lambda undoes the multiplication by -1+2a-\lambda .
a-b+2ab=a^{2}+b\lambda
Add 2ab to both sides.
a-b+2ab-b\lambda =a^{2}
Subtract b\lambda from both sides.
-b+2ab-b\lambda =a^{2}-a
Subtract a from both sides.
\left(-1+2a-\lambda \right)b=a^{2}-a
Combine all terms containing b.
\left(2a-\lambda -1\right)b=a^{2}-a
The equation is in standard form.
\frac{\left(2a-\lambda -1\right)b}{2a-\lambda -1}=\frac{a\left(a-1\right)}{2a-\lambda -1}
Divide both sides by -1+2a-\lambda .
b=\frac{a\left(a-1\right)}{2a-\lambda -1}
Dividing by -1+2a-\lambda undoes the multiplication by -1+2a-\lambda .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}