Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a+b\right)a}{a}-\frac{b}{a}-\left(a+\frac{b}{a}-b\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply a+b times \frac{a}{a}.
\frac{\left(a+b\right)a-b}{a}-\left(a+\frac{b}{a}-b\right)
Since \frac{\left(a+b\right)a}{a} and \frac{b}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+ba-b}{a}-\left(a+\frac{b}{a}-b\right)
Do the multiplications in \left(a+b\right)a-b.
\frac{a^{2}+ba-b}{a}-\left(\frac{\left(a-b\right)a}{a}+\frac{b}{a}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply a-b times \frac{a}{a}.
\frac{a^{2}+ba-b}{a}-\frac{\left(a-b\right)a+b}{a}
Since \frac{\left(a-b\right)a}{a} and \frac{b}{a} have the same denominator, add them by adding their numerators.
\frac{a^{2}+ba-b}{a}-\frac{a^{2}-ba+b}{a}
Do the multiplications in \left(a-b\right)a+b.
\frac{a^{2}+ba-b-\left(a^{2}-ba+b\right)}{a}
Since \frac{a^{2}+ba-b}{a} and \frac{a^{2}-ba+b}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+ba-b-a^{2}+ba-b}{a}
Do the multiplications in a^{2}+ba-b-\left(a^{2}-ba+b\right).
\frac{2ba-2b}{a}
Combine like terms in a^{2}+ba-b-a^{2}+ba-b.
\frac{\left(a+b\right)a}{a}-\frac{b}{a}-\left(a+\frac{b}{a}-b\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply a+b times \frac{a}{a}.
\frac{\left(a+b\right)a-b}{a}-\left(a+\frac{b}{a}-b\right)
Since \frac{\left(a+b\right)a}{a} and \frac{b}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+ba-b}{a}-\left(a+\frac{b}{a}-b\right)
Do the multiplications in \left(a+b\right)a-b.
\frac{a^{2}+ba-b}{a}-\left(\frac{\left(a-b\right)a}{a}+\frac{b}{a}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply a-b times \frac{a}{a}.
\frac{a^{2}+ba-b}{a}-\frac{\left(a-b\right)a+b}{a}
Since \frac{\left(a-b\right)a}{a} and \frac{b}{a} have the same denominator, add them by adding their numerators.
\frac{a^{2}+ba-b}{a}-\frac{a^{2}-ba+b}{a}
Do the multiplications in \left(a-b\right)a+b.
\frac{a^{2}+ba-b-\left(a^{2}-ba+b\right)}{a}
Since \frac{a^{2}+ba-b}{a} and \frac{a^{2}-ba+b}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+ba-b-a^{2}+ba-b}{a}
Do the multiplications in a^{2}+ba-b-\left(a^{2}-ba+b\right).
\frac{2ba-2b}{a}
Combine like terms in a^{2}+ba-b-a^{2}+ba-b.