Evaluate
a
Differentiate w.r.t. a
1
Quiz
Algebra
5 problems similar to:
( a - b + \frac { b ^ { 2 } } { a + b } ) \cdot \frac { a + b } { a }
Share
Copied to clipboard
\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-b times \frac{a+b}{a+b}.
\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a}
Since \frac{\left(a-b\right)\left(a+b\right)}{a+b} and \frac{b^{2}}{a+b} have the same denominator, add them by adding their numerators.
\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a}
Do the multiplications in \left(a-b\right)\left(a+b\right)+b^{2}.
\frac{a^{2}}{a+b}\times \frac{a+b}{a}
Combine like terms in a^{2}+ab-ba-b^{2}+b^{2}.
\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a}
Multiply \frac{a^{2}}{a+b} times \frac{a+b}{a} by multiplying numerator times numerator and denominator times denominator.
a
Cancel out a\left(a+b\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a})
To add or subtract expressions, expand them to make their denominators the same. Multiply a-b times \frac{a+b}{a+b}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a})
Since \frac{\left(a-b\right)\left(a+b\right)}{a+b} and \frac{b^{2}}{a+b} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a})
Do the multiplications in \left(a-b\right)\left(a+b\right)+b^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}}{a+b}\times \frac{a+b}{a})
Combine like terms in a^{2}+ab-ba-b^{2}+b^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a})
Multiply \frac{a^{2}}{a+b} times \frac{a+b}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Cancel out a\left(a+b\right) in both numerator and denominator.
a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
a^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}