Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-b times \frac{a+b}{a+b}.
\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a}
Since \frac{\left(a-b\right)\left(a+b\right)}{a+b} and \frac{b^{2}}{a+b} have the same denominator, add them by adding their numerators.
\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a}
Do the multiplications in \left(a-b\right)\left(a+b\right)+b^{2}.
\frac{a^{2}}{a+b}\times \frac{a+b}{a}
Combine like terms in a^{2}+ab-ba-b^{2}+b^{2}.
\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a}
Multiply \frac{a^{2}}{a+b} times \frac{a+b}{a} by multiplying numerator times numerator and denominator times denominator.
a
Cancel out a\left(a+b\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a})
To add or subtract expressions, expand them to make their denominators the same. Multiply a-b times \frac{a+b}{a+b}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a})
Since \frac{\left(a-b\right)\left(a+b\right)}{a+b} and \frac{b^{2}}{a+b} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a})
Do the multiplications in \left(a-b\right)\left(a+b\right)+b^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}}{a+b}\times \frac{a+b}{a})
Combine like terms in a^{2}+ab-ba-b^{2}+b^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a})
Multiply \frac{a^{2}}{a+b} times \frac{a+b}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Cancel out a\left(a+b\right) in both numerator and denominator.
a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
a^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.