Solve for R
\left\{\begin{matrix}\\R=2a\text{, }&\text{unconditionally}\\R\in \mathrm{R}\text{, }&a=0\end{matrix}\right.
Solve for a
a=\frac{R}{2}
a=0
Share
Copied to clipboard
a^{2}-2aR+R^{2}+3a^{2}=R^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-R\right)^{2}.
4a^{2}-2aR+R^{2}=R^{2}
Combine a^{2} and 3a^{2} to get 4a^{2}.
4a^{2}-2aR+R^{2}-R^{2}=0
Subtract R^{2} from both sides.
4a^{2}-2aR=0
Combine R^{2} and -R^{2} to get 0.
-2aR=-4a^{2}
Subtract 4a^{2} from both sides. Anything subtracted from zero gives its negation.
\left(-2a\right)R=-4a^{2}
The equation is in standard form.
\frac{\left(-2a\right)R}{-2a}=-\frac{4a^{2}}{-2a}
Divide both sides by -2a.
R=-\frac{4a^{2}}{-2a}
Dividing by -2a undoes the multiplication by -2a.
R=2a
Divide -4a^{2} by -2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}