Evaluate
6a-39
Expand
6a-39
Share
Copied to clipboard
a^{2}-10a+25-\left(a-8\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-5\right)^{2}.
a^{2}-10a+25-\left(a^{2}-16a+64\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-8\right)^{2}.
a^{2}-10a+25-a^{2}+16a-64
To find the opposite of a^{2}-16a+64, find the opposite of each term.
-10a+25+16a-64
Combine a^{2} and -a^{2} to get 0.
6a+25-64
Combine -10a and 16a to get 6a.
6a-39
Subtract 64 from 25 to get -39.
a^{2}-10a+25-\left(a-8\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-5\right)^{2}.
a^{2}-10a+25-\left(a^{2}-16a+64\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-8\right)^{2}.
a^{2}-10a+25-a^{2}+16a-64
To find the opposite of a^{2}-16a+64, find the opposite of each term.
-10a+25+16a-64
Combine a^{2} and -a^{2} to get 0.
6a+25-64
Combine -10a and 16a to get 6a.
6a-39
Subtract 64 from 25 to get -39.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}