Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-10a+25=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-5\right)^{2}.
a^{2}-10a+25-4=0
Subtract 4 from both sides.
a^{2}-10a+21=0
Subtract 4 from 25 to get 21.
a+b=-10 ab=21
To solve the equation, factor a^{2}-10a+21 using formula a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right). To find a and b, set up a system to be solved.
-1,-21 -3,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 21.
-1-21=-22 -3-7=-10
Calculate the sum for each pair.
a=-7 b=-3
The solution is the pair that gives sum -10.
\left(a-7\right)\left(a-3\right)
Rewrite factored expression \left(a+a\right)\left(a+b\right) using the obtained values.
a=7 a=3
To find equation solutions, solve a-7=0 and a-3=0.
a^{2}-10a+25=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-5\right)^{2}.
a^{2}-10a+25-4=0
Subtract 4 from both sides.
a^{2}-10a+21=0
Subtract 4 from 25 to get 21.
a+b=-10 ab=1\times 21=21
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as a^{2}+aa+ba+21. To find a and b, set up a system to be solved.
-1,-21 -3,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 21.
-1-21=-22 -3-7=-10
Calculate the sum for each pair.
a=-7 b=-3
The solution is the pair that gives sum -10.
\left(a^{2}-7a\right)+\left(-3a+21\right)
Rewrite a^{2}-10a+21 as \left(a^{2}-7a\right)+\left(-3a+21\right).
a\left(a-7\right)-3\left(a-7\right)
Factor out a in the first and -3 in the second group.
\left(a-7\right)\left(a-3\right)
Factor out common term a-7 by using distributive property.
a=7 a=3
To find equation solutions, solve a-7=0 and a-3=0.
a^{2}-10a+25=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-5\right)^{2}.
a^{2}-10a+25-4=0
Subtract 4 from both sides.
a^{2}-10a+21=0
Subtract 4 from 25 to get 21.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 21}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-10\right)±\sqrt{100-4\times 21}}{2}
Square -10.
a=\frac{-\left(-10\right)±\sqrt{100-84}}{2}
Multiply -4 times 21.
a=\frac{-\left(-10\right)±\sqrt{16}}{2}
Add 100 to -84.
a=\frac{-\left(-10\right)±4}{2}
Take the square root of 16.
a=\frac{10±4}{2}
The opposite of -10 is 10.
a=\frac{14}{2}
Now solve the equation a=\frac{10±4}{2} when ± is plus. Add 10 to 4.
a=7
Divide 14 by 2.
a=\frac{6}{2}
Now solve the equation a=\frac{10±4}{2} when ± is minus. Subtract 4 from 10.
a=3
Divide 6 by 2.
a=7 a=3
The equation is now solved.
\sqrt{\left(a-5\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
a-5=2 a-5=-2
Simplify.
a=7 a=3
Add 5 to both sides of the equation.