Solve for a
a=60
a=80
Share
Copied to clipboard
1400a-10a^{2}-40000=8000
Use the distributive property to multiply a-40 by 1000-10a and combine like terms.
1400a-10a^{2}-40000-8000=0
Subtract 8000 from both sides.
1400a-10a^{2}-48000=0
Subtract 8000 from -40000 to get -48000.
-10a^{2}+1400a-48000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-1400±\sqrt{1400^{2}-4\left(-10\right)\left(-48000\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 1400 for b, and -48000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-1400±\sqrt{1960000-4\left(-10\right)\left(-48000\right)}}{2\left(-10\right)}
Square 1400.
a=\frac{-1400±\sqrt{1960000+40\left(-48000\right)}}{2\left(-10\right)}
Multiply -4 times -10.
a=\frac{-1400±\sqrt{1960000-1920000}}{2\left(-10\right)}
Multiply 40 times -48000.
a=\frac{-1400±\sqrt{40000}}{2\left(-10\right)}
Add 1960000 to -1920000.
a=\frac{-1400±200}{2\left(-10\right)}
Take the square root of 40000.
a=\frac{-1400±200}{-20}
Multiply 2 times -10.
a=-\frac{1200}{-20}
Now solve the equation a=\frac{-1400±200}{-20} when ± is plus. Add -1400 to 200.
a=60
Divide -1200 by -20.
a=-\frac{1600}{-20}
Now solve the equation a=\frac{-1400±200}{-20} when ± is minus. Subtract 200 from -1400.
a=80
Divide -1600 by -20.
a=60 a=80
The equation is now solved.
1400a-10a^{2}-40000=8000
Use the distributive property to multiply a-40 by 1000-10a and combine like terms.
1400a-10a^{2}=8000+40000
Add 40000 to both sides.
1400a-10a^{2}=48000
Add 8000 and 40000 to get 48000.
-10a^{2}+1400a=48000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10a^{2}+1400a}{-10}=\frac{48000}{-10}
Divide both sides by -10.
a^{2}+\frac{1400}{-10}a=\frac{48000}{-10}
Dividing by -10 undoes the multiplication by -10.
a^{2}-140a=\frac{48000}{-10}
Divide 1400 by -10.
a^{2}-140a=-4800
Divide 48000 by -10.
a^{2}-140a+\left(-70\right)^{2}=-4800+\left(-70\right)^{2}
Divide -140, the coefficient of the x term, by 2 to get -70. Then add the square of -70 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-140a+4900=-4800+4900
Square -70.
a^{2}-140a+4900=100
Add -4800 to 4900.
\left(a-70\right)^{2}=100
Factor a^{2}-140a+4900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-70\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
a-70=10 a-70=-10
Simplify.
a=80 a=60
Add 70 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}