Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(a-4\right)\left(\frac{a^{2}}{4}+\frac{4\left(a+4\right)}{4}\right)+3\left(a^{2}-a-1\right)\left(a-3\right)+7
To add or subtract expressions, expand them to make their denominators the same. Multiply a+4 times \frac{4}{4}.
\left(a-4\right)\times \frac{a^{2}+4\left(a+4\right)}{4}+3\left(a^{2}-a-1\right)\left(a-3\right)+7
Since \frac{a^{2}}{4} and \frac{4\left(a+4\right)}{4} have the same denominator, add them by adding their numerators.
\left(a-4\right)\times \frac{a^{2}+4a+16}{4}+3\left(a^{2}-a-1\right)\left(a-3\right)+7
Do the multiplications in a^{2}+4\left(a+4\right).
\frac{\left(a-4\right)\left(a^{2}+4a+16\right)}{4}+3\left(a^{2}-a-1\right)\left(a-3\right)+7
Express \left(a-4\right)\times \frac{a^{2}+4a+16}{4} as a single fraction.
\frac{a^{3}-64}{4}+3\left(a^{2}-a-1\right)\left(a-3\right)+7
Use the distributive property to multiply a-4 by a^{2}+4a+16 and combine like terms.
\frac{a^{3}-64}{4}+\left(3a^{2}-3a-3\right)\left(a-3\right)+7
Use the distributive property to multiply 3 by a^{2}-a-1.
\frac{a^{3}-64}{4}+3a^{3}-12a^{2}+6a+9+7
Use the distributive property to multiply 3a^{2}-3a-3 by a-3 and combine like terms.
\frac{a^{3}-64}{4}+3a^{3}-12a^{2}+6a+16
Add 9 and 7 to get 16.
\frac{a^{3}-64}{4}+\frac{4\left(3a^{3}-12a^{2}+6a+16\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3a^{3}-12a^{2}+6a+16 times \frac{4}{4}.
\frac{a^{3}-64+4\left(3a^{3}-12a^{2}+6a+16\right)}{4}
Since \frac{a^{3}-64}{4} and \frac{4\left(3a^{3}-12a^{2}+6a+16\right)}{4} have the same denominator, add them by adding their numerators.
\frac{a^{3}-64+12a^{3}-48a^{2}+24a+64}{4}
Do the multiplications in a^{3}-64+4\left(3a^{3}-12a^{2}+6a+16\right).
\frac{13a^{3}-48a^{2}+24a}{4}
Combine like terms in a^{3}-64+12a^{3}-48a^{2}+24a+64.
\left(a-4\right)\left(\frac{a^{2}}{4}+\frac{4\left(a+4\right)}{4}\right)+3\left(a^{2}-a-1\right)\left(a-3\right)+7
To add or subtract expressions, expand them to make their denominators the same. Multiply a+4 times \frac{4}{4}.
\left(a-4\right)\times \frac{a^{2}+4\left(a+4\right)}{4}+3\left(a^{2}-a-1\right)\left(a-3\right)+7
Since \frac{a^{2}}{4} and \frac{4\left(a+4\right)}{4} have the same denominator, add them by adding their numerators.
\left(a-4\right)\times \frac{a^{2}+4a+16}{4}+3\left(a^{2}-a-1\right)\left(a-3\right)+7
Do the multiplications in a^{2}+4\left(a+4\right).
\frac{\left(a-4\right)\left(a^{2}+4a+16\right)}{4}+3\left(a^{2}-a-1\right)\left(a-3\right)+7
Express \left(a-4\right)\times \frac{a^{2}+4a+16}{4} as a single fraction.
\frac{a^{3}-64}{4}+3\left(a^{2}-a-1\right)\left(a-3\right)+7
Use the distributive property to multiply a-4 by a^{2}+4a+16 and combine like terms.
\frac{a^{3}-64}{4}+\left(3a^{2}-3a-3\right)\left(a-3\right)+7
Use the distributive property to multiply 3 by a^{2}-a-1.
\frac{a^{3}-64}{4}+3a^{3}-12a^{2}+6a+9+7
Use the distributive property to multiply 3a^{2}-3a-3 by a-3 and combine like terms.
\frac{a^{3}-64}{4}+3a^{3}-12a^{2}+6a+16
Add 9 and 7 to get 16.
\frac{a^{3}-64}{4}+\frac{4\left(3a^{3}-12a^{2}+6a+16\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3a^{3}-12a^{2}+6a+16 times \frac{4}{4}.
\frac{a^{3}-64+4\left(3a^{3}-12a^{2}+6a+16\right)}{4}
Since \frac{a^{3}-64}{4} and \frac{4\left(3a^{3}-12a^{2}+6a+16\right)}{4} have the same denominator, add them by adding their numerators.
\frac{a^{3}-64+12a^{3}-48a^{2}+24a+64}{4}
Do the multiplications in a^{3}-64+4\left(3a^{3}-12a^{2}+6a+16\right).
\frac{13a^{3}-48a^{2}+24a}{4}
Combine like terms in a^{3}-64+12a^{3}-48a^{2}+24a+64.