Solve for a
a=60\sqrt{3}+240\approx 343.923048454
a=240-60\sqrt{3}\approx 136.076951546
Share
Copied to clipboard
a^{2}-640a+102400+\left(\frac{\sqrt{3}}{3}a\right)^{2}=200^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-320\right)^{2}.
a^{2}-640a+102400+\left(\frac{\sqrt{3}a}{3}\right)^{2}=200^{2}
Express \frac{\sqrt{3}}{3}a as a single fraction.
a^{2}-640a+102400+\frac{\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
To raise \frac{\sqrt{3}a}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(a^{2}-640a+102400\right)\times 3^{2}}{3^{2}}+\frac{\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2}-640a+102400 times \frac{3^{2}}{3^{2}}.
\frac{\left(a^{2}-640a+102400\right)\times 3^{2}+\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
Since \frac{\left(a^{2}-640a+102400\right)\times 3^{2}}{3^{2}} and \frac{\left(\sqrt{3}a\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
a^{2}+\frac{\left(-640a+102400\right)\times 3^{2}}{3^{2}}+\frac{\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -640a+102400 times \frac{3^{2}}{3^{2}}.
a^{2}+\frac{\left(-640a+102400\right)\times 3^{2}+\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
Since \frac{\left(-640a+102400\right)\times 3^{2}}{3^{2}} and \frac{\left(\sqrt{3}a\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
a^{2}-640a+\frac{102400\times 3^{2}}{3^{2}}+\frac{\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 102400 times \frac{3^{2}}{3^{2}}.
a^{2}-640a+\frac{102400\times 3^{2}+\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
Since \frac{102400\times 3^{2}}{3^{2}} and \frac{\left(\sqrt{3}a\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
a^{2}-640a+\frac{102400\times 3^{2}+\left(\sqrt{3}a\right)^{2}}{3^{2}}=40000
Calculate 200 to the power of 2 and get 40000.
a^{2}-640a+\frac{102400\times 9+\left(\sqrt{3}a\right)^{2}}{3^{2}}=40000
Calculate 3 to the power of 2 and get 9.
a^{2}-640a+\frac{921600+\left(\sqrt{3}a\right)^{2}}{3^{2}}=40000
Multiply 102400 and 9 to get 921600.
a^{2}-640a+\frac{921600+\left(\sqrt{3}\right)^{2}a^{2}}{3^{2}}=40000
Expand \left(\sqrt{3}a\right)^{2}.
a^{2}-640a+\frac{921600+3a^{2}}{3^{2}}=40000
The square of \sqrt{3} is 3.
a^{2}-640a+\frac{921600+3a^{2}}{9}=40000
Calculate 3 to the power of 2 and get 9.
a^{2}-640a+102400+\frac{1}{3}a^{2}=40000
Divide each term of 921600+3a^{2} by 9 to get 102400+\frac{1}{3}a^{2}.
\frac{4}{3}a^{2}-640a+102400=40000
Combine a^{2} and \frac{1}{3}a^{2} to get \frac{4}{3}a^{2}.
\frac{4}{3}a^{2}-640a+102400-40000=0
Subtract 40000 from both sides.
\frac{4}{3}a^{2}-640a+62400=0
Subtract 40000 from 102400 to get 62400.
a=\frac{-\left(-640\right)±\sqrt{\left(-640\right)^{2}-4\times \frac{4}{3}\times 62400}}{2\times \frac{4}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{4}{3} for a, -640 for b, and 62400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-640\right)±\sqrt{409600-4\times \frac{4}{3}\times 62400}}{2\times \frac{4}{3}}
Square -640.
a=\frac{-\left(-640\right)±\sqrt{409600-\frac{16}{3}\times 62400}}{2\times \frac{4}{3}}
Multiply -4 times \frac{4}{3}.
a=\frac{-\left(-640\right)±\sqrt{409600-332800}}{2\times \frac{4}{3}}
Multiply -\frac{16}{3} times 62400.
a=\frac{-\left(-640\right)±\sqrt{76800}}{2\times \frac{4}{3}}
Add 409600 to -332800.
a=\frac{-\left(-640\right)±160\sqrt{3}}{2\times \frac{4}{3}}
Take the square root of 76800.
a=\frac{640±160\sqrt{3}}{2\times \frac{4}{3}}
The opposite of -640 is 640.
a=\frac{640±160\sqrt{3}}{\frac{8}{3}}
Multiply 2 times \frac{4}{3}.
a=\frac{160\sqrt{3}+640}{\frac{8}{3}}
Now solve the equation a=\frac{640±160\sqrt{3}}{\frac{8}{3}} when ± is plus. Add 640 to 160\sqrt{3}.
a=60\sqrt{3}+240
Divide 640+160\sqrt{3} by \frac{8}{3} by multiplying 640+160\sqrt{3} by the reciprocal of \frac{8}{3}.
a=\frac{640-160\sqrt{3}}{\frac{8}{3}}
Now solve the equation a=\frac{640±160\sqrt{3}}{\frac{8}{3}} when ± is minus. Subtract 160\sqrt{3} from 640.
a=240-60\sqrt{3}
Divide 640-160\sqrt{3} by \frac{8}{3} by multiplying 640-160\sqrt{3} by the reciprocal of \frac{8}{3}.
a=60\sqrt{3}+240 a=240-60\sqrt{3}
The equation is now solved.
a^{2}-640a+102400+\left(\frac{\sqrt{3}}{3}a\right)^{2}=200^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-320\right)^{2}.
a^{2}-640a+102400+\left(\frac{\sqrt{3}a}{3}\right)^{2}=200^{2}
Express \frac{\sqrt{3}}{3}a as a single fraction.
a^{2}-640a+102400+\frac{\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
To raise \frac{\sqrt{3}a}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(a^{2}-640a+102400\right)\times 3^{2}}{3^{2}}+\frac{\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2}-640a+102400 times \frac{3^{2}}{3^{2}}.
\frac{\left(a^{2}-640a+102400\right)\times 3^{2}+\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
Since \frac{\left(a^{2}-640a+102400\right)\times 3^{2}}{3^{2}} and \frac{\left(\sqrt{3}a\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
a^{2}+\frac{\left(-640a+102400\right)\times 3^{2}}{3^{2}}+\frac{\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -640a+102400 times \frac{3^{2}}{3^{2}}.
a^{2}+\frac{\left(-640a+102400\right)\times 3^{2}+\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
Since \frac{\left(-640a+102400\right)\times 3^{2}}{3^{2}} and \frac{\left(\sqrt{3}a\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
a^{2}-640a+\frac{102400\times 3^{2}}{3^{2}}+\frac{\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 102400 times \frac{3^{2}}{3^{2}}.
a^{2}-640a+\frac{102400\times 3^{2}+\left(\sqrt{3}a\right)^{2}}{3^{2}}=200^{2}
Since \frac{102400\times 3^{2}}{3^{2}} and \frac{\left(\sqrt{3}a\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
a^{2}-640a+\frac{102400\times 3^{2}+\left(\sqrt{3}a\right)^{2}}{3^{2}}=40000
Calculate 200 to the power of 2 and get 40000.
a^{2}-640a+\frac{102400\times 9+\left(\sqrt{3}a\right)^{2}}{3^{2}}=40000
Calculate 3 to the power of 2 and get 9.
a^{2}-640a+\frac{921600+\left(\sqrt{3}a\right)^{2}}{3^{2}}=40000
Multiply 102400 and 9 to get 921600.
a^{2}-640a+\frac{921600+\left(\sqrt{3}\right)^{2}a^{2}}{3^{2}}=40000
Expand \left(\sqrt{3}a\right)^{2}.
a^{2}-640a+\frac{921600+3a^{2}}{3^{2}}=40000
The square of \sqrt{3} is 3.
a^{2}-640a+\frac{921600+3a^{2}}{9}=40000
Calculate 3 to the power of 2 and get 9.
a^{2}-640a+102400+\frac{1}{3}a^{2}=40000
Divide each term of 921600+3a^{2} by 9 to get 102400+\frac{1}{3}a^{2}.
\frac{4}{3}a^{2}-640a+102400=40000
Combine a^{2} and \frac{1}{3}a^{2} to get \frac{4}{3}a^{2}.
\frac{4}{3}a^{2}-640a=40000-102400
Subtract 102400 from both sides.
\frac{4}{3}a^{2}-640a=-62400
Subtract 102400 from 40000 to get -62400.
\frac{\frac{4}{3}a^{2}-640a}{\frac{4}{3}}=-\frac{62400}{\frac{4}{3}}
Divide both sides of the equation by \frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
a^{2}+\left(-\frac{640}{\frac{4}{3}}\right)a=-\frac{62400}{\frac{4}{3}}
Dividing by \frac{4}{3} undoes the multiplication by \frac{4}{3}.
a^{2}-480a=-\frac{62400}{\frac{4}{3}}
Divide -640 by \frac{4}{3} by multiplying -640 by the reciprocal of \frac{4}{3}.
a^{2}-480a=-46800
Divide -62400 by \frac{4}{3} by multiplying -62400 by the reciprocal of \frac{4}{3}.
a^{2}-480a+\left(-240\right)^{2}=-46800+\left(-240\right)^{2}
Divide -480, the coefficient of the x term, by 2 to get -240. Then add the square of -240 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-480a+57600=-46800+57600
Square -240.
a^{2}-480a+57600=10800
Add -46800 to 57600.
\left(a-240\right)^{2}=10800
Factor a^{2}-480a+57600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-240\right)^{2}}=\sqrt{10800}
Take the square root of both sides of the equation.
a-240=60\sqrt{3} a-240=-60\sqrt{3}
Simplify.
a=60\sqrt{3}+240 a=240-60\sqrt{3}
Add 240 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}