Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(a-3\right)\left(a+3\right)}{a+3}-\frac{7}{a+3}}{\frac{a-4}{2a+b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-3 times \frac{a+3}{a+3}.
\frac{\frac{\left(a-3\right)\left(a+3\right)-7}{a+3}}{\frac{a-4}{2a+b}}
Since \frac{\left(a-3\right)\left(a+3\right)}{a+3} and \frac{7}{a+3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}+3a-3a-9-7}{a+3}}{\frac{a-4}{2a+b}}
Do the multiplications in \left(a-3\right)\left(a+3\right)-7.
\frac{\frac{a^{2}-16}{a+3}}{\frac{a-4}{2a+b}}
Combine like terms in a^{2}+3a-3a-9-7.
\frac{\left(a^{2}-16\right)\left(2a+b\right)}{\left(a+3\right)\left(a-4\right)}
Divide \frac{a^{2}-16}{a+3} by \frac{a-4}{2a+b} by multiplying \frac{a^{2}-16}{a+3} by the reciprocal of \frac{a-4}{2a+b}.
\frac{\left(a-4\right)\left(a+4\right)\left(2a+b\right)}{\left(a-4\right)\left(a+3\right)}
Factor the expressions that are not already factored.
\frac{\left(a+4\right)\left(2a+b\right)}{a+3}
Cancel out a-4 in both numerator and denominator.
\frac{2a^{2}+ab+8a+4b}{a+3}
Expand the expression.
\frac{\frac{\left(a-3\right)\left(a+3\right)}{a+3}-\frac{7}{a+3}}{\frac{a-4}{2a+b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-3 times \frac{a+3}{a+3}.
\frac{\frac{\left(a-3\right)\left(a+3\right)-7}{a+3}}{\frac{a-4}{2a+b}}
Since \frac{\left(a-3\right)\left(a+3\right)}{a+3} and \frac{7}{a+3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}+3a-3a-9-7}{a+3}}{\frac{a-4}{2a+b}}
Do the multiplications in \left(a-3\right)\left(a+3\right)-7.
\frac{\frac{a^{2}-16}{a+3}}{\frac{a-4}{2a+b}}
Combine like terms in a^{2}+3a-3a-9-7.
\frac{\left(a^{2}-16\right)\left(2a+b\right)}{\left(a+3\right)\left(a-4\right)}
Divide \frac{a^{2}-16}{a+3} by \frac{a-4}{2a+b} by multiplying \frac{a^{2}-16}{a+3} by the reciprocal of \frac{a-4}{2a+b}.
\frac{\left(a-4\right)\left(a+4\right)\left(2a+b\right)}{\left(a-4\right)\left(a+3\right)}
Factor the expressions that are not already factored.
\frac{\left(a+4\right)\left(2a+b\right)}{a+3}
Cancel out a-4 in both numerator and denominator.
\frac{2a^{2}+ab+8a+4b}{a+3}
Expand the expression.