Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

ab+2a^{2}-2b^{2}-4ba-\left(a-2b\right)\left(2b-a\right)
Apply the distributive property by multiplying each term of a-2b by each term of b+2a.
-3ab+2a^{2}-2b^{2}-\left(a-2b\right)\left(2b-a\right)
Combine ab and -4ba to get -3ab.
-3ab+2a^{2}-2b^{2}-\left(2ab-a^{2}-4b^{2}+2ba\right)
Apply the distributive property by multiplying each term of a-2b by each term of 2b-a.
-3ab+2a^{2}-2b^{2}-\left(4ab-a^{2}-4b^{2}\right)
Combine 2ab and 2ba to get 4ab.
-3ab+2a^{2}-2b^{2}-4ab-\left(-a^{2}\right)-\left(-4b^{2}\right)
To find the opposite of 4ab-a^{2}-4b^{2}, find the opposite of each term.
-3ab+2a^{2}-2b^{2}-4ab+a^{2}-\left(-4b^{2}\right)
The opposite of -a^{2} is a^{2}.
-3ab+2a^{2}-2b^{2}-4ab+a^{2}+4b^{2}
The opposite of -4b^{2} is 4b^{2}.
-7ab+2a^{2}-2b^{2}+a^{2}+4b^{2}
Combine -3ab and -4ab to get -7ab.
-7ab+3a^{2}-2b^{2}+4b^{2}
Combine 2a^{2} and a^{2} to get 3a^{2}.
-7ab+3a^{2}+2b^{2}
Combine -2b^{2} and 4b^{2} to get 2b^{2}.
ab+2a^{2}-2b^{2}-4ba-\left(a-2b\right)\left(2b-a\right)
Apply the distributive property by multiplying each term of a-2b by each term of b+2a.
-3ab+2a^{2}-2b^{2}-\left(a-2b\right)\left(2b-a\right)
Combine ab and -4ba to get -3ab.
-3ab+2a^{2}-2b^{2}-\left(2ab-a^{2}-4b^{2}+2ba\right)
Apply the distributive property by multiplying each term of a-2b by each term of 2b-a.
-3ab+2a^{2}-2b^{2}-\left(4ab-a^{2}-4b^{2}\right)
Combine 2ab and 2ba to get 4ab.
-3ab+2a^{2}-2b^{2}-4ab-\left(-a^{2}\right)-\left(-4b^{2}\right)
To find the opposite of 4ab-a^{2}-4b^{2}, find the opposite of each term.
-3ab+2a^{2}-2b^{2}-4ab+a^{2}-\left(-4b^{2}\right)
The opposite of -a^{2} is a^{2}.
-3ab+2a^{2}-2b^{2}-4ab+a^{2}+4b^{2}
The opposite of -4b^{2} is 4b^{2}.
-7ab+2a^{2}-2b^{2}+a^{2}+4b^{2}
Combine -3ab and -4ab to get -7ab.
-7ab+3a^{2}-2b^{2}+4b^{2}
Combine 2a^{2} and a^{2} to get 3a^{2}.
-7ab+3a^{2}+2b^{2}
Combine -2b^{2} and 4b^{2} to get 2b^{2}.