Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-4ab+4b^{2}-\left(a-b\right)\left(a+b\right)-2b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2b\right)^{2}.
a^{2}-4ab+4b^{2}-\left(a^{2}-b^{2}\right)-2b^{2}
Consider \left(a-b\right)\left(a+b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-4ab+4b^{2}-a^{2}+b^{2}-2b^{2}
To find the opposite of a^{2}-b^{2}, find the opposite of each term.
-4ab+4b^{2}+b^{2}-2b^{2}
Combine a^{2} and -a^{2} to get 0.
-4ab+5b^{2}-2b^{2}
Combine 4b^{2} and b^{2} to get 5b^{2}.
-4ab+3b^{2}
Combine 5b^{2} and -2b^{2} to get 3b^{2}.
a^{2}-4ab+4b^{2}-\left(a-b\right)\left(a+b\right)-2b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2b\right)^{2}.
a^{2}-4ab+4b^{2}-\left(a^{2}-b^{2}\right)-2b^{2}
Consider \left(a-b\right)\left(a+b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-4ab+4b^{2}-a^{2}+b^{2}-2b^{2}
To find the opposite of a^{2}-b^{2}, find the opposite of each term.
-4ab+4b^{2}+b^{2}-2b^{2}
Combine a^{2} and -a^{2} to get 0.
-4ab+5b^{2}-2b^{2}
Combine 4b^{2} and b^{2} to get 5b^{2}.
-4ab+3b^{2}
Combine 5b^{2} and -2b^{2} to get 3b^{2}.