Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-4ab+4b^{2}-\left(\left(a-2b\right)\left(a+2b\right)-8b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2b\right)^{2}.
a^{2}-4ab+4b^{2}-\left(a^{2}-\left(2b\right)^{2}-8b^{2}\right)
Consider \left(a-2b\right)\left(a+2b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-4ab+4b^{2}-\left(a^{2}-2^{2}b^{2}-8b^{2}\right)
Expand \left(2b\right)^{2}.
a^{2}-4ab+4b^{2}-\left(a^{2}-4b^{2}-8b^{2}\right)
Calculate 2 to the power of 2 and get 4.
a^{2}-4ab+4b^{2}-\left(a^{2}-12b^{2}\right)
Combine -4b^{2} and -8b^{2} to get -12b^{2}.
a^{2}-4ab+4b^{2}-a^{2}+12b^{2}
To find the opposite of a^{2}-12b^{2}, find the opposite of each term.
-4ab+4b^{2}+12b^{2}
Combine a^{2} and -a^{2} to get 0.
-4ab+16b^{2}
Combine 4b^{2} and 12b^{2} to get 16b^{2}.
a^{2}-4ab+4b^{2}-\left(\left(a-2b\right)\left(a+2b\right)-8b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2b\right)^{2}.
a^{2}-4ab+4b^{2}-\left(a^{2}-\left(2b\right)^{2}-8b^{2}\right)
Consider \left(a-2b\right)\left(a+2b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-4ab+4b^{2}-\left(a^{2}-2^{2}b^{2}-8b^{2}\right)
Expand \left(2b\right)^{2}.
a^{2}-4ab+4b^{2}-\left(a^{2}-4b^{2}-8b^{2}\right)
Calculate 2 to the power of 2 and get 4.
a^{2}-4ab+4b^{2}-\left(a^{2}-12b^{2}\right)
Combine -4b^{2} and -8b^{2} to get -12b^{2}.
a^{2}-4ab+4b^{2}-a^{2}+12b^{2}
To find the opposite of a^{2}-12b^{2}, find the opposite of each term.
-4ab+4b^{2}+12b^{2}
Combine a^{2} and -a^{2} to get 0.
-4ab+16b^{2}
Combine 4b^{2} and 12b^{2} to get 16b^{2}.