Solve for a
a=\frac{2x^{2}+6x+3}{x^{2}+3x+2}
x\neq -2\text{ and }x\neq -1
Solve for x (complex solution)
x=\frac{\sqrt{\left(a-6\right)\left(a-2\right)}-3a+6}{2\left(a-2\right)}
x=\frac{-\sqrt{\left(a-6\right)\left(a-2\right)}-3a+6}{2\left(a-2\right)}\text{, }a\neq 2
Solve for x
x=\frac{\sqrt{\left(a-6\right)\left(a-2\right)}-3a+6}{2\left(a-2\right)}
x=\frac{-\sqrt{\left(a-6\right)\left(a-2\right)}-3a+6}{2\left(a-2\right)}\text{, }a\geq 6\text{ or }a<2
Graph
Share
Copied to clipboard
ax^{2}-2x^{2}+\left(3a-6\right)x+2a-3=0
Use the distributive property to multiply a-2 by x^{2}.
ax^{2}-2x^{2}+3ax-6x+2a-3=0
Use the distributive property to multiply 3a-6 by x.
ax^{2}+3ax-6x+2a-3=2x^{2}
Add 2x^{2} to both sides. Anything plus zero gives itself.
ax^{2}+3ax+2a-3=2x^{2}+6x
Add 6x to both sides.
ax^{2}+3ax+2a=2x^{2}+6x+3
Add 3 to both sides.
\left(x^{2}+3x+2\right)a=2x^{2}+6x+3
Combine all terms containing a.
\frac{\left(x^{2}+3x+2\right)a}{x^{2}+3x+2}=\frac{2x^{2}+6x+3}{x^{2}+3x+2}
Divide both sides by x^{2}+3x+2.
a=\frac{2x^{2}+6x+3}{x^{2}+3x+2}
Dividing by x^{2}+3x+2 undoes the multiplication by x^{2}+3x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}