Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\left(a-2\right)^{2}=11
Multiply a-2 and a-2 to get \left(a-2\right)^{2}.
a^{2}-4a+4=11
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-2\right)^{2}.
a^{2}-4a+4-11=0
Subtract 11 from both sides.
a^{2}-4a-7=0
Subtract 11 from 4 to get -7.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-7\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-4\right)±\sqrt{16-4\left(-7\right)}}{2}
Square -4.
a=\frac{-\left(-4\right)±\sqrt{16+28}}{2}
Multiply -4 times -7.
a=\frac{-\left(-4\right)±\sqrt{44}}{2}
Add 16 to 28.
a=\frac{-\left(-4\right)±2\sqrt{11}}{2}
Take the square root of 44.
a=\frac{4±2\sqrt{11}}{2}
The opposite of -4 is 4.
a=\frac{2\sqrt{11}+4}{2}
Now solve the equation a=\frac{4±2\sqrt{11}}{2} when ± is plus. Add 4 to 2\sqrt{11}.
a=\sqrt{11}+2
Divide 4+2\sqrt{11} by 2.
a=\frac{4-2\sqrt{11}}{2}
Now solve the equation a=\frac{4±2\sqrt{11}}{2} when ± is minus. Subtract 2\sqrt{11} from 4.
a=2-\sqrt{11}
Divide 4-2\sqrt{11} by 2.
a=\sqrt{11}+2 a=2-\sqrt{11}
The equation is now solved.
\left(a-2\right)^{2}=11
Multiply a-2 and a-2 to get \left(a-2\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{11}
Take the square root of both sides of the equation.
a-2=\sqrt{11} a-2=-\sqrt{11}
Simplify.
a=\sqrt{11}+2 a=2-\sqrt{11}
Add 2 to both sides of the equation.