Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

370a-10a^{2}-700=400
Use the distributive property to multiply a-2 by 350-10a and combine like terms.
370a-10a^{2}-700-400=0
Subtract 400 from both sides.
370a-10a^{2}-1100=0
Subtract 400 from -700 to get -1100.
-10a^{2}+370a-1100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-370±\sqrt{370^{2}-4\left(-10\right)\left(-1100\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 370 for b, and -1100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-370±\sqrt{136900-4\left(-10\right)\left(-1100\right)}}{2\left(-10\right)}
Square 370.
a=\frac{-370±\sqrt{136900+40\left(-1100\right)}}{2\left(-10\right)}
Multiply -4 times -10.
a=\frac{-370±\sqrt{136900-44000}}{2\left(-10\right)}
Multiply 40 times -1100.
a=\frac{-370±\sqrt{92900}}{2\left(-10\right)}
Add 136900 to -44000.
a=\frac{-370±10\sqrt{929}}{2\left(-10\right)}
Take the square root of 92900.
a=\frac{-370±10\sqrt{929}}{-20}
Multiply 2 times -10.
a=\frac{10\sqrt{929}-370}{-20}
Now solve the equation a=\frac{-370±10\sqrt{929}}{-20} when ± is plus. Add -370 to 10\sqrt{929}.
a=\frac{37-\sqrt{929}}{2}
Divide -370+10\sqrt{929} by -20.
a=\frac{-10\sqrt{929}-370}{-20}
Now solve the equation a=\frac{-370±10\sqrt{929}}{-20} when ± is minus. Subtract 10\sqrt{929} from -370.
a=\frac{\sqrt{929}+37}{2}
Divide -370-10\sqrt{929} by -20.
a=\frac{37-\sqrt{929}}{2} a=\frac{\sqrt{929}+37}{2}
The equation is now solved.
370a-10a^{2}-700=400
Use the distributive property to multiply a-2 by 350-10a and combine like terms.
370a-10a^{2}=400+700
Add 700 to both sides.
370a-10a^{2}=1100
Add 400 and 700 to get 1100.
-10a^{2}+370a=1100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10a^{2}+370a}{-10}=\frac{1100}{-10}
Divide both sides by -10.
a^{2}+\frac{370}{-10}a=\frac{1100}{-10}
Dividing by -10 undoes the multiplication by -10.
a^{2}-37a=\frac{1100}{-10}
Divide 370 by -10.
a^{2}-37a=-110
Divide 1100 by -10.
a^{2}-37a+\left(-\frac{37}{2}\right)^{2}=-110+\left(-\frac{37}{2}\right)^{2}
Divide -37, the coefficient of the x term, by 2 to get -\frac{37}{2}. Then add the square of -\frac{37}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-37a+\frac{1369}{4}=-110+\frac{1369}{4}
Square -\frac{37}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-37a+\frac{1369}{4}=\frac{929}{4}
Add -110 to \frac{1369}{4}.
\left(a-\frac{37}{2}\right)^{2}=\frac{929}{4}
Factor a^{2}-37a+\frac{1369}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{37}{2}\right)^{2}}=\sqrt{\frac{929}{4}}
Take the square root of both sides of the equation.
a-\frac{37}{2}=\frac{\sqrt{929}}{2} a-\frac{37}{2}=-\frac{\sqrt{929}}{2}
Simplify.
a=\frac{\sqrt{929}+37}{2} a=\frac{37-\sqrt{929}}{2}
Add \frac{37}{2} to both sides of the equation.