Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-4+3\left(a+2\right)^{2}-6a\left(a+2\right)
Consider \left(a-2\right)\left(a+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
a^{2}-4+3\left(a^{2}+4a+4\right)-6a\left(a+2\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+2\right)^{2}.
a^{2}-4+3a^{2}+12a+12-6a\left(a+2\right)
Use the distributive property to multiply 3 by a^{2}+4a+4.
4a^{2}-4+12a+12-6a\left(a+2\right)
Combine a^{2} and 3a^{2} to get 4a^{2}.
4a^{2}+8+12a-6a\left(a+2\right)
Add -4 and 12 to get 8.
4a^{2}+8+12a-6a^{2}-12a
Use the distributive property to multiply -6a by a+2.
-2a^{2}+8+12a-12a
Combine 4a^{2} and -6a^{2} to get -2a^{2}.
-2a^{2}+8
Combine 12a and -12a to get 0.
a^{2}-4+3\left(a+2\right)^{2}-6a\left(a+2\right)
Consider \left(a-2\right)\left(a+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
a^{2}-4+3\left(a^{2}+4a+4\right)-6a\left(a+2\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+2\right)^{2}.
a^{2}-4+3a^{2}+12a+12-6a\left(a+2\right)
Use the distributive property to multiply 3 by a^{2}+4a+4.
4a^{2}-4+12a+12-6a\left(a+2\right)
Combine a^{2} and 3a^{2} to get 4a^{2}.
4a^{2}+8+12a-6a\left(a+2\right)
Add -4 and 12 to get 8.
4a^{2}+8+12a-6a^{2}-12a
Use the distributive property to multiply -6a by a+2.
-2a^{2}+8+12a-12a
Combine 4a^{2} and -6a^{2} to get -2a^{2}.
-2a^{2}+8
Combine 12a and -12a to get 0.