Evaluate
-6a^{3}+12a-3
Expand
-6a^{3}+12a-3
Share
Copied to clipboard
a^{3}-6a^{2}+12a-8-7\left(a^{3}-1\right)-2\left(a^{2}+a-1\right)\left(a^{2}-a-1\right)+2a^{4}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a-2\right)^{3}.
a^{3}-6a^{2}+12a-8-7a^{3}+7-2\left(a^{2}+a-1\right)\left(a^{2}-a-1\right)+2a^{4}
Use the distributive property to multiply -7 by a^{3}-1.
-6a^{3}-6a^{2}+12a-8+7-2\left(a^{2}+a-1\right)\left(a^{2}-a-1\right)+2a^{4}
Combine a^{3} and -7a^{3} to get -6a^{3}.
-6a^{3}-6a^{2}+12a-1-2\left(a^{2}+a-1\right)\left(a^{2}-a-1\right)+2a^{4}
Add -8 and 7 to get -1.
-6a^{3}-6a^{2}+12a-1+\left(-2a^{2}-2a+2\right)\left(a^{2}-a-1\right)+2a^{4}
Use the distributive property to multiply -2 by a^{2}+a-1.
-6a^{3}-6a^{2}+12a-1-2a^{4}+6a^{2}-2+2a^{4}
Use the distributive property to multiply -2a^{2}-2a+2 by a^{2}-a-1 and combine like terms.
-6a^{3}+12a-1-2a^{4}-2+2a^{4}
Combine -6a^{2} and 6a^{2} to get 0.
-6a^{3}+12a-3-2a^{4}+2a^{4}
Subtract 2 from -1 to get -3.
-6a^{3}+12a-3
Combine -2a^{4} and 2a^{4} to get 0.
a^{3}-6a^{2}+12a-8-7\left(a^{3}-1\right)-2\left(a^{2}+a-1\right)\left(a^{2}-a-1\right)+2a^{4}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a-2\right)^{3}.
a^{3}-6a^{2}+12a-8-7a^{3}+7-2\left(a^{2}+a-1\right)\left(a^{2}-a-1\right)+2a^{4}
Use the distributive property to multiply -7 by a^{3}-1.
-6a^{3}-6a^{2}+12a-8+7-2\left(a^{2}+a-1\right)\left(a^{2}-a-1\right)+2a^{4}
Combine a^{3} and -7a^{3} to get -6a^{3}.
-6a^{3}-6a^{2}+12a-1-2\left(a^{2}+a-1\right)\left(a^{2}-a-1\right)+2a^{4}
Add -8 and 7 to get -1.
-6a^{3}-6a^{2}+12a-1+\left(-2a^{2}-2a+2\right)\left(a^{2}-a-1\right)+2a^{4}
Use the distributive property to multiply -2 by a^{2}+a-1.
-6a^{3}-6a^{2}+12a-1-2a^{4}+6a^{2}-2+2a^{4}
Use the distributive property to multiply -2a^{2}-2a+2 by a^{2}-a-1 and combine like terms.
-6a^{3}+12a-1-2a^{4}-2+2a^{4}
Combine -6a^{2} and 6a^{2} to get 0.
-6a^{3}+12a-3-2a^{4}+2a^{4}
Subtract 2 from -1 to get -3.
-6a^{3}+12a-3
Combine -2a^{4} and 2a^{4} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}