Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-4a+4-\left(a-5\right)\left(a+5\right)-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2\right)^{2}.
a^{2}-4a+4-\left(a^{2}-25\right)-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Consider \left(a-5\right)\left(a+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
a^{2}-4a+4-a^{2}+25-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
To find the opposite of a^{2}-25, find the opposite of each term.
-4a+4+25-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Combine a^{2} and -a^{2} to get 0.
-4a+29-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Add 4 and 25 to get 29.
-4a+29-\left(a^{2}-14a+49\right)+2\left(a^{2}-10\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-7\right)^{2}.
-4a+29-a^{2}+14a-49+2\left(a^{2}-10\right)
To find the opposite of a^{2}-14a+49, find the opposite of each term.
10a+29-a^{2}-49+2\left(a^{2}-10\right)
Combine -4a and 14a to get 10a.
10a-20-a^{2}+2\left(a^{2}-10\right)
Subtract 49 from 29 to get -20.
10a-20-a^{2}+2a^{2}-20
Use the distributive property to multiply 2 by a^{2}-10.
10a-20+a^{2}-20
Combine -a^{2} and 2a^{2} to get a^{2}.
10a-40+a^{2}
Subtract 20 from -20 to get -40.
a^{2}-4a+4-\left(a-5\right)\left(a+5\right)-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2\right)^{2}.
a^{2}-4a+4-\left(a^{2}-25\right)-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Consider \left(a-5\right)\left(a+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
a^{2}-4a+4-a^{2}+25-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
To find the opposite of a^{2}-25, find the opposite of each term.
-4a+4+25-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Combine a^{2} and -a^{2} to get 0.
-4a+29-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Add 4 and 25 to get 29.
-4a+29-\left(a^{2}-14a+49\right)+2\left(a^{2}-10\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-7\right)^{2}.
-4a+29-a^{2}+14a-49+2\left(a^{2}-10\right)
To find the opposite of a^{2}-14a+49, find the opposite of each term.
10a+29-a^{2}-49+2\left(a^{2}-10\right)
Combine -4a and 14a to get 10a.
10a-20-a^{2}+2\left(a^{2}-10\right)
Subtract 49 from 29 to get -20.
10a-20-a^{2}+2a^{2}-20
Use the distributive property to multiply 2 by a^{2}-10.
10a-20+a^{2}-20
Combine -a^{2} and 2a^{2} to get a^{2}.
10a-40+a^{2}
Subtract 20 from -20 to get -40.