Evaluate
a^{2}+10a-40
Expand
a^{2}+10a-40
Share
Copied to clipboard
a^{2}-4a+4-\left(a-5\right)\left(a+5\right)-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2\right)^{2}.
a^{2}-4a+4-\left(a^{2}-25\right)-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Consider \left(a-5\right)\left(a+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
a^{2}-4a+4-a^{2}+25-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
To find the opposite of a^{2}-25, find the opposite of each term.
-4a+4+25-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Combine a^{2} and -a^{2} to get 0.
-4a+29-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Add 4 and 25 to get 29.
-4a+29-\left(a^{2}-14a+49\right)+2\left(a^{2}-10\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-7\right)^{2}.
-4a+29-a^{2}+14a-49+2\left(a^{2}-10\right)
To find the opposite of a^{2}-14a+49, find the opposite of each term.
10a+29-a^{2}-49+2\left(a^{2}-10\right)
Combine -4a and 14a to get 10a.
10a-20-a^{2}+2\left(a^{2}-10\right)
Subtract 49 from 29 to get -20.
10a-20-a^{2}+2a^{2}-20
Use the distributive property to multiply 2 by a^{2}-10.
10a-20+a^{2}-20
Combine -a^{2} and 2a^{2} to get a^{2}.
10a-40+a^{2}
Subtract 20 from -20 to get -40.
a^{2}-4a+4-\left(a-5\right)\left(a+5\right)-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2\right)^{2}.
a^{2}-4a+4-\left(a^{2}-25\right)-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Consider \left(a-5\right)\left(a+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
a^{2}-4a+4-a^{2}+25-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
To find the opposite of a^{2}-25, find the opposite of each term.
-4a+4+25-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Combine a^{2} and -a^{2} to get 0.
-4a+29-\left(a-7\right)^{2}+2\left(a^{2}-10\right)
Add 4 and 25 to get 29.
-4a+29-\left(a^{2}-14a+49\right)+2\left(a^{2}-10\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-7\right)^{2}.
-4a+29-a^{2}+14a-49+2\left(a^{2}-10\right)
To find the opposite of a^{2}-14a+49, find the opposite of each term.
10a+29-a^{2}-49+2\left(a^{2}-10\right)
Combine -4a and 14a to get 10a.
10a-20-a^{2}+2\left(a^{2}-10\right)
Subtract 49 from 29 to get -20.
10a-20-a^{2}+2a^{2}-20
Use the distributive property to multiply 2 by a^{2}-10.
10a-20+a^{2}-20
Combine -a^{2} and 2a^{2} to get a^{2}.
10a-40+a^{2}
Subtract 20 from -20 to get -40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}