Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{2+c+x+bx-x^{2}}{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&c=-2\text{ and }x=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-ax+x-\frac{c}{x}-1-\frac{2}{x}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&c=-2\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{2+c+x+bx-x^{2}}{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&c=-2\text{ and }x=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-ax+x-\frac{c}{x}-1-\frac{2}{x}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&c=-2\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
ax^{2}-x^{2}+\left(b+1\right)x+2+c=0
Use the distributive property to multiply a-1 by x^{2}.
ax^{2}-x^{2}+bx+x+2+c=0
Use the distributive property to multiply b+1 by x.
ax^{2}+bx+x+2+c=x^{2}
Add x^{2} to both sides. Anything plus zero gives itself.
ax^{2}+x+2+c=x^{2}-bx
Subtract bx from both sides.
ax^{2}+2+c=x^{2}-bx-x
Subtract x from both sides.
ax^{2}+c=x^{2}-bx-x-2
Subtract 2 from both sides.
ax^{2}=x^{2}-bx-x-2-c
Subtract c from both sides.
x^{2}a=x^{2}-bx-x-c-2
The equation is in standard form.
\frac{x^{2}a}{x^{2}}=\frac{x^{2}-bx-x-c-2}{x^{2}}
Divide both sides by x^{2}.
a=\frac{x^{2}-bx-x-c-2}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
ax^{2}-x^{2}+\left(b+1\right)x+2+c=0
Use the distributive property to multiply a-1 by x^{2}.
ax^{2}-x^{2}+bx+x+2+c=0
Use the distributive property to multiply b+1 by x.
-x^{2}+bx+x+2+c=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
bx+x+2+c=-ax^{2}+x^{2}
Add x^{2} to both sides.
bx+2+c=-ax^{2}+x^{2}-x
Subtract x from both sides.
bx+c=-ax^{2}+x^{2}-x-2
Subtract 2 from both sides.
bx=-ax^{2}+x^{2}-x-2-c
Subtract c from both sides.
bx=-ax^{2}+x^{2}-x-c-2
Reorder the terms.
xb=-ax^{2}+x^{2}-x-c-2
The equation is in standard form.
\frac{xb}{x}=\frac{-ax^{2}+x^{2}-x-c-2}{x}
Divide both sides by x.
b=\frac{-ax^{2}+x^{2}-x-c-2}{x}
Dividing by x undoes the multiplication by x.
b=-ax+x-\frac{c+2}{x}-1
Divide -ax^{2}+x^{2}-x-c-2 by x.
ax^{2}-x^{2}+\left(b+1\right)x+2+c=0
Use the distributive property to multiply a-1 by x^{2}.
ax^{2}-x^{2}+bx+x+2+c=0
Use the distributive property to multiply b+1 by x.
ax^{2}+bx+x+2+c=x^{2}
Add x^{2} to both sides. Anything plus zero gives itself.
ax^{2}+x+2+c=x^{2}-bx
Subtract bx from both sides.
ax^{2}+2+c=x^{2}-bx-x
Subtract x from both sides.
ax^{2}+c=x^{2}-bx-x-2
Subtract 2 from both sides.
ax^{2}=x^{2}-bx-x-2-c
Subtract c from both sides.
x^{2}a=x^{2}-bx-x-c-2
The equation is in standard form.
\frac{x^{2}a}{x^{2}}=\frac{x^{2}-bx-x-c-2}{x^{2}}
Divide both sides by x^{2}.
a=\frac{x^{2}-bx-x-c-2}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
ax^{2}-x^{2}+\left(b+1\right)x+2+c=0
Use the distributive property to multiply a-1 by x^{2}.
ax^{2}-x^{2}+bx+x+2+c=0
Use the distributive property to multiply b+1 by x.
-x^{2}+bx+x+2+c=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
bx+x+2+c=-ax^{2}+x^{2}
Add x^{2} to both sides.
bx+2+c=-ax^{2}+x^{2}-x
Subtract x from both sides.
bx+c=-ax^{2}+x^{2}-x-2
Subtract 2 from both sides.
bx=-ax^{2}+x^{2}-x-2-c
Subtract c from both sides.
bx=-ax^{2}+x^{2}-x-c-2
Reorder the terms.
xb=-ax^{2}+x^{2}-x-c-2
The equation is in standard form.
\frac{xb}{x}=\frac{-ax^{2}+x^{2}-x-c-2}{x}
Divide both sides by x.
b=\frac{-ax^{2}+x^{2}-x-c-2}{x}
Dividing by x undoes the multiplication by x.
b=-ax+x-\frac{c+2}{x}-1
Divide -ax^{2}+x^{2}-x-c-2 by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}