Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-1+\left(a-1\right)^{2}
Consider \left(a-1\right)\left(a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{2}-1+a^{2}-2a+1
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-1\right)^{2}.
2a^{2}-1-2a+1
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}-2a
Add -1 and 1 to get 0.
a^{2}-1+\left(a-1\right)^{2}
Consider \left(a-1\right)\left(a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{2}-1+a^{2}-2a+1
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-1\right)^{2}.
2a^{2}-1-2a+1
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}-2a
Add -1 and 1 to get 0.