Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(a-1\right)\left(2a+1\right)+\left(-a\right)^{2}+\left(5a+1\right)\left(-a\right)+\left(-\frac{1}{3}a\right)^{1}+1
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 2 from 3 to get 1.
2a^{2}-a-1+\left(-a\right)^{2}+\left(5a+1\right)\left(-a\right)+\left(-\frac{1}{3}a\right)^{1}+1
Use the distributive property to multiply a-1 by 2a+1 and combine like terms.
2a^{2}-a-1+a^{2}+\left(5a+1\right)\left(-a\right)+\left(-\frac{1}{3}a\right)^{1}+1
Calculate -a to the power of 2 and get a^{2}.
3a^{2}-a-1+\left(5a+1\right)\left(-a\right)+\left(-\frac{1}{3}a\right)^{1}+1
Combine 2a^{2} and a^{2} to get 3a^{2}.
3a^{2}-a-1+5a\left(-a\right)-a+\left(-\frac{1}{3}a\right)^{1}+1
Use the distributive property to multiply 5a+1 by -a.
3a^{2}-a-1+5a\left(-a\right)-a-\frac{1}{3}a+1
Calculate -\frac{1}{3}a to the power of 1 and get -\frac{1}{3}a.
3a^{2}-\frac{4}{3}a-1+5a\left(-a\right)-a+1
Combine -a and -\frac{1}{3}a to get -\frac{4}{3}a.
3a^{2}-\frac{4}{3}a+5a\left(-a\right)-a
Add -1 and 1 to get 0.
3a^{2}-\frac{4}{3}a+5a^{2}\left(-1\right)-a
Multiply a and a to get a^{2}.
3a^{2}-\frac{4}{3}a-5a^{2}-a
Multiply 5 and -1 to get -5.
-2a^{2}-\frac{4}{3}a-a
Combine 3a^{2} and -5a^{2} to get -2a^{2}.
-2a^{2}-\frac{7}{3}a
Combine -\frac{4}{3}a and -a to get -\frac{7}{3}a.
\left(a-1\right)\left(2a+1\right)+\left(-a\right)^{2}+\left(5a+1\right)\left(-a\right)+\left(-\frac{1}{3}a\right)^{1}+1
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 2 from 3 to get 1.
2a^{2}-a-1+\left(-a\right)^{2}+\left(5a+1\right)\left(-a\right)+\left(-\frac{1}{3}a\right)^{1}+1
Use the distributive property to multiply a-1 by 2a+1 and combine like terms.
2a^{2}-a-1+a^{2}+\left(5a+1\right)\left(-a\right)+\left(-\frac{1}{3}a\right)^{1}+1
Calculate -a to the power of 2 and get a^{2}.
3a^{2}-a-1+\left(5a+1\right)\left(-a\right)+\left(-\frac{1}{3}a\right)^{1}+1
Combine 2a^{2} and a^{2} to get 3a^{2}.
3a^{2}-a-1+5a\left(-a\right)-a+\left(-\frac{1}{3}a\right)^{1}+1
Use the distributive property to multiply 5a+1 by -a.
3a^{2}-a-1+5a\left(-a\right)-a-\frac{1}{3}a+1
Calculate -\frac{1}{3}a to the power of 1 and get -\frac{1}{3}a.
3a^{2}-\frac{4}{3}a-1+5a\left(-a\right)-a+1
Combine -a and -\frac{1}{3}a to get -\frac{4}{3}a.
3a^{2}-\frac{4}{3}a+5a\left(-a\right)-a
Add -1 and 1 to get 0.
3a^{2}-\frac{4}{3}a+5a^{2}\left(-1\right)-a
Multiply a and a to get a^{2}.
3a^{2}-\frac{4}{3}a-5a^{2}-a
Multiply 5 and -1 to get -5.
-2a^{2}-\frac{4}{3}a-a
Combine 3a^{2} and -5a^{2} to get -2a^{2}.
-2a^{2}-\frac{7}{3}a
Combine -\frac{4}{3}a and -a to get -\frac{7}{3}a.