Solve for a (complex solution)
\left\{\begin{matrix}\\a=1\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=1\text{, }&x\geq 0\\a\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\geq 0\text{, }&a=1\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&a=1\end{matrix}\right.
Graph
Share
Copied to clipboard
a\sqrt{x}-\sqrt{x}=0
Use the distributive property to multiply a-1 by \sqrt{x}.
a\sqrt{x}=\sqrt{x}
Add \sqrt{x} to both sides. Anything plus zero gives itself.
\sqrt{x}a=\sqrt{x}
The equation is in standard form.
\frac{\sqrt{x}a}{\sqrt{x}}=\frac{\sqrt{x}}{\sqrt{x}}
Divide both sides by \sqrt{x}.
a=\frac{\sqrt{x}}{\sqrt{x}}
Dividing by \sqrt{x} undoes the multiplication by \sqrt{x}.
a=1
Divide \sqrt{x} by \sqrt{x}.
a\sqrt{x}-\sqrt{x}=0
Use the distributive property to multiply a-1 by \sqrt{x}.
a\sqrt{x}=\sqrt{x}
Add \sqrt{x} to both sides. Anything plus zero gives itself.
\sqrt{x}a=\sqrt{x}
The equation is in standard form.
\frac{\sqrt{x}a}{\sqrt{x}}=\frac{\sqrt{x}}{\sqrt{x}}
Divide both sides by \sqrt{x}.
a=\frac{\sqrt{x}}{\sqrt{x}}
Dividing by \sqrt{x} undoes the multiplication by \sqrt{x}.
a=1
Divide \sqrt{x} by \sqrt{x}.
\frac{\left(a-1\right)\sqrt{x}}{a-1}=\frac{0}{a-1}
Divide both sides by a-1.
\sqrt{x}=\frac{0}{a-1}
Dividing by a-1 undoes the multiplication by a-1.
\sqrt{x}=0
Divide 0 by a-1.
x=0
Square both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}