Evaluate
a^{4}-9a^{3}+18a^{2}-17a+6
Expand
a^{4}-9a^{3}+18a^{2}-17a+6
Share
Copied to clipboard
\left(a-1\right)^{2}\left(a-3\right)\left(a-2\right)-a^{2}\left(a-1+a\right)
Multiply a and a to get a^{2}.
\left(a^{2}-2a+1\right)\left(a-3\right)\left(a-2\right)-a^{2}\left(a-1+a\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-1\right)^{2}.
\left(a^{3}-5a^{2}+7a-3\right)\left(a-2\right)-a^{2}\left(a-1+a\right)
Use the distributive property to multiply a^{2}-2a+1 by a-3 and combine like terms.
a^{4}-7a^{3}+17a^{2}-17a+6-a^{2}\left(a-1+a\right)
Use the distributive property to multiply a^{3}-5a^{2}+7a-3 by a-2 and combine like terms.
a^{4}-7a^{3}+17a^{2}-17a+6-a^{2}\left(2a-1\right)
Combine a and a to get 2a.
a^{4}-7a^{3}+17a^{2}-17a+6-\left(2a^{3}-a^{2}\right)
Use the distributive property to multiply a^{2} by 2a-1.
a^{4}-7a^{3}+17a^{2}-17a+6-2a^{3}+a^{2}
To find the opposite of 2a^{3}-a^{2}, find the opposite of each term.
a^{4}-9a^{3}+17a^{2}-17a+6+a^{2}
Combine -7a^{3} and -2a^{3} to get -9a^{3}.
a^{4}-9a^{3}+18a^{2}-17a+6
Combine 17a^{2} and a^{2} to get 18a^{2}.
\left(a-1\right)^{2}\left(a-3\right)\left(a-2\right)-a^{2}\left(a-1+a\right)
Multiply a and a to get a^{2}.
\left(a^{2}-2a+1\right)\left(a-3\right)\left(a-2\right)-a^{2}\left(a-1+a\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-1\right)^{2}.
\left(a^{3}-5a^{2}+7a-3\right)\left(a-2\right)-a^{2}\left(a-1+a\right)
Use the distributive property to multiply a^{2}-2a+1 by a-3 and combine like terms.
a^{4}-7a^{3}+17a^{2}-17a+6-a^{2}\left(a-1+a\right)
Use the distributive property to multiply a^{3}-5a^{2}+7a-3 by a-2 and combine like terms.
a^{4}-7a^{3}+17a^{2}-17a+6-a^{2}\left(2a-1\right)
Combine a and a to get 2a.
a^{4}-7a^{3}+17a^{2}-17a+6-\left(2a^{3}-a^{2}\right)
Use the distributive property to multiply a^{2} by 2a-1.
a^{4}-7a^{3}+17a^{2}-17a+6-2a^{3}+a^{2}
To find the opposite of 2a^{3}-a^{2}, find the opposite of each term.
a^{4}-9a^{3}+17a^{2}-17a+6+a^{2}
Combine -7a^{3} and -2a^{3} to get -9a^{3}.
a^{4}-9a^{3}+18a^{2}-17a+6
Combine 17a^{2} and a^{2} to get 18a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}