Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a\left(a+3\right)}{a+3}-\frac{3a+4}{a+3}}{\frac{a-2}{a+3}}-\frac{a+3}{a+2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a+3}{a+3}.
\frac{\frac{a\left(a+3\right)-\left(3a+4\right)}{a+3}}{\frac{a-2}{a+3}}-\frac{a+3}{a+2}
Since \frac{a\left(a+3\right)}{a+3} and \frac{3a+4}{a+3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}+3a-3a-4}{a+3}}{\frac{a-2}{a+3}}-\frac{a+3}{a+2}
Do the multiplications in a\left(a+3\right)-\left(3a+4\right).
\frac{\frac{a^{2}-4}{a+3}}{\frac{a-2}{a+3}}-\frac{a+3}{a+2}
Combine like terms in a^{2}+3a-3a-4.
\frac{\left(a^{2}-4\right)\left(a+3\right)}{\left(a+3\right)\left(a-2\right)}-\frac{a+3}{a+2}
Divide \frac{a^{2}-4}{a+3} by \frac{a-2}{a+3} by multiplying \frac{a^{2}-4}{a+3} by the reciprocal of \frac{a-2}{a+3}.
\frac{a^{2}-4}{a-2}-\frac{a+3}{a+2}
Cancel out a+3 in both numerator and denominator.
\frac{\left(a-2\right)\left(a+2\right)}{a-2}-\frac{a+3}{a+2}
Factor the expressions that are not already factored in \frac{a^{2}-4}{a-2}.
a+2-\frac{a+3}{a+2}
Cancel out a-2 in both numerator and denominator.
\frac{\left(a+2\right)\left(a+2\right)}{a+2}-\frac{a+3}{a+2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a+2 times \frac{a+2}{a+2}.
\frac{\left(a+2\right)\left(a+2\right)-\left(a+3\right)}{a+2}
Since \frac{\left(a+2\right)\left(a+2\right)}{a+2} and \frac{a+3}{a+2} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+2a+2a+4-a-3}{a+2}
Do the multiplications in \left(a+2\right)\left(a+2\right)-\left(a+3\right).
\frac{a^{2}+3a+1}{a+2}
Combine like terms in a^{2}+2a+2a+4-a-3.
\frac{\frac{a\left(a+3\right)}{a+3}-\frac{3a+4}{a+3}}{\frac{a-2}{a+3}}-\frac{a+3}{a+2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a+3}{a+3}.
\frac{\frac{a\left(a+3\right)-\left(3a+4\right)}{a+3}}{\frac{a-2}{a+3}}-\frac{a+3}{a+2}
Since \frac{a\left(a+3\right)}{a+3} and \frac{3a+4}{a+3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}+3a-3a-4}{a+3}}{\frac{a-2}{a+3}}-\frac{a+3}{a+2}
Do the multiplications in a\left(a+3\right)-\left(3a+4\right).
\frac{\frac{a^{2}-4}{a+3}}{\frac{a-2}{a+3}}-\frac{a+3}{a+2}
Combine like terms in a^{2}+3a-3a-4.
\frac{\left(a^{2}-4\right)\left(a+3\right)}{\left(a+3\right)\left(a-2\right)}-\frac{a+3}{a+2}
Divide \frac{a^{2}-4}{a+3} by \frac{a-2}{a+3} by multiplying \frac{a^{2}-4}{a+3} by the reciprocal of \frac{a-2}{a+3}.
\frac{a^{2}-4}{a-2}-\frac{a+3}{a+2}
Cancel out a+3 in both numerator and denominator.
\frac{\left(a-2\right)\left(a+2\right)}{a-2}-\frac{a+3}{a+2}
Factor the expressions that are not already factored in \frac{a^{2}-4}{a-2}.
a+2-\frac{a+3}{a+2}
Cancel out a-2 in both numerator and denominator.
\frac{\left(a+2\right)\left(a+2\right)}{a+2}-\frac{a+3}{a+2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a+2 times \frac{a+2}{a+2}.
\frac{\left(a+2\right)\left(a+2\right)-\left(a+3\right)}{a+2}
Since \frac{\left(a+2\right)\left(a+2\right)}{a+2} and \frac{a+3}{a+2} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+2a+2a+4-a-3}{a+2}
Do the multiplications in \left(a+2\right)\left(a+2\right)-\left(a+3\right).
\frac{a^{2}+3a+1}{a+2}
Combine like terms in a^{2}+2a+2a+4-a-3.