Evaluate
6114a^{50}
Differentiate w.r.t. a
305700a^{49}
Share
Copied to clipboard
a^{28}\left(a^{2}\right)^{11}\times 6114
To raise a power to another power, multiply the exponents. Multiply 4 and 7 to get 28.
a^{28}a^{22}\times 6114
To raise a power to another power, multiply the exponents. Multiply 2 and 11 to get 22.
a^{50}\times 6114
To multiply powers of the same base, add their exponents. Add 28 and 22 to get 50.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{28}\left(a^{2}\right)^{11}\times 6114)
To raise a power to another power, multiply the exponents. Multiply 4 and 7 to get 28.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{28}a^{22}\times 6114)
To raise a power to another power, multiply the exponents. Multiply 2 and 11 to get 22.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{50}\times 6114)
To multiply powers of the same base, add their exponents. Add 28 and 22 to get 50.
50\times 6114a^{50-1}
The derivative of ax^{n} is nax^{n-1}.
305700a^{50-1}
Multiply 50 times 6114.
305700a^{49}
Subtract 1 from 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}