Evaluate
\frac{1}{a^{2}}
Differentiate w.r.t. a
-\frac{2}{a^{3}}
Share
Copied to clipboard
\left(a^{4}\right)^{2}\left(a^{5}\right)^{-2}
Use the rules of exponents to simplify the expression.
a^{4\times 2}a^{5\left(-2\right)}
To raise a power to another power, multiply the exponents.
a^{8}a^{5\left(-2\right)}
Multiply 4 times 2.
a^{8}a^{-10}
Multiply 5 times -2.
a^{8-10}
To multiply powers of the same base, add their exponents.
a^{-2}
Add the exponents 8 and -10.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{8}\left(a^{5}\right)^{-2})
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{8}a^{-10})
To raise a power to another power, multiply the exponents. Multiply 5 and -2 to get -10.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{-2})
To multiply powers of the same base, add their exponents. Add 8 and -10 to get -2.
-2a^{-2-1}
The derivative of ax^{n} is nax^{n-1}.
-2a^{-3}
Subtract 1 from -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}