Evaluate
2a^{11}
Expand
2a^{11}
Share
Copied to clipboard
a^{6}a^{5}+\left(\left(-a\right)^{2}\right)^{5}a
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{11}+\left(\left(-a\right)^{2}\right)^{5}a
To multiply powers of the same base, add their exponents. Add 6 and 5 to get 11.
a^{11}+\left(-a\right)^{10}a
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
a^{11}+\left(-1\right)^{10}a^{10}a
Expand \left(-a\right)^{10}.
a^{11}+1a^{10}a
Calculate -1 to the power of 10 and get 1.
a^{11}+1a^{11}
To multiply powers of the same base, add their exponents. Add 10 and 1 to get 11.
2a^{11}
Combine a^{11} and 1a^{11} to get 2a^{11}.
a^{6}a^{5}+\left(\left(-a\right)^{2}\right)^{5}a
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{11}+\left(\left(-a\right)^{2}\right)^{5}a
To multiply powers of the same base, add their exponents. Add 6 and 5 to get 11.
a^{11}+\left(-a\right)^{10}a
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
a^{11}+\left(-1\right)^{10}a^{10}a
Expand \left(-a\right)^{10}.
a^{11}+1a^{10}a
Calculate -1 to the power of 10 and get 1.
a^{11}+1a^{11}
To multiply powers of the same base, add their exponents. Add 10 and 1 to get 11.
2a^{11}
Combine a^{11} and 1a^{11} to get 2a^{11}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}