Evaluate
0
Factor
0
Share
Copied to clipboard
a^{6}+\frac{a^{9}}{-a^{3}}\times 1
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{6}+\frac{a^{9}}{-a^{3}}
Express \frac{a^{9}}{-a^{3}}\times 1 as a single fraction.
\frac{a^{6}\left(-1\right)a^{3}}{-a^{3}}+\frac{a^{9}}{-a^{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{6} times \frac{-a^{3}}{-a^{3}}.
\frac{a^{6}\left(-1\right)a^{3}+a^{9}}{-a^{3}}
Since \frac{a^{6}\left(-1\right)a^{3}}{-a^{3}} and \frac{a^{9}}{-a^{3}} have the same denominator, add them by adding their numerators.
\frac{-a^{9}+a^{9}}{-a^{3}}
Do the multiplications in a^{6}\left(-1\right)a^{3}+a^{9}.
\frac{0}{-a^{3}}
Combine like terms in -a^{9}+a^{9}.
0
Zero divided by any non-zero term gives zero.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}