Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(a^{3}+\frac{10}{27}+a^{2}\right)a-2a\left(a^{2}+\frac{1}{6}\right)+\frac{-\frac{3}{5}a-\frac{3}{2}a^{4}+\frac{1}{5}a^{3}}{\frac{9}{5}a}
Add \frac{1}{27} and \frac{1}{3} to get \frac{10}{27}.
a^{4}+\frac{10}{27}a+a^{3}-2a\left(a^{2}+\frac{1}{6}\right)+\frac{-\frac{3}{5}a-\frac{3}{2}a^{4}+\frac{1}{5}a^{3}}{\frac{9}{5}a}
Use the distributive property to multiply a^{3}+\frac{10}{27}+a^{2} by a.
a^{4}+\frac{10}{27}a+a^{3}-2a\left(a^{2}+\frac{1}{6}\right)+\frac{\frac{1}{10}a\left(-15a^{3}+2a^{2}-6\right)}{\frac{9}{5}a}
Factor the expressions that are not already factored in \frac{-\frac{3}{5}a-\frac{3}{2}a^{4}+\frac{1}{5}a^{3}}{\frac{9}{5}a}.
a^{4}+\frac{10}{27}a+a^{3}-2a\left(a^{2}+\frac{1}{6}\right)+\frac{\frac{1}{10}\left(-15a^{3}+2a^{2}-6\right)}{\frac{9}{5}}
Cancel out a in both numerator and denominator.
a^{4}+\frac{10}{27}a+a^{3}-2a\left(a^{2}+\frac{1}{6}\right)+\frac{1}{18}\left(-15a^{3}+2a^{2}-6\right)
Divide \frac{1}{10}\left(-15a^{3}+2a^{2}-6\right) by \frac{9}{5} to get \frac{1}{18}\left(-15a^{3}+2a^{2}-6\right).
a^{4}+\frac{10}{27}a+a^{3}-2a\left(a^{2}+\frac{1}{6}\right)-\frac{5}{6}a^{3}+\frac{1}{9}a^{2}-\frac{1}{3}
Use the distributive property to multiply \frac{1}{18} by -15a^{3}+2a^{2}-6.
a^{4}+\frac{10}{27}a+a^{3}-2a^{3}-\frac{1}{3}a-\frac{5}{6}a^{3}+\frac{1}{9}a^{2}-\frac{1}{3}
Use the distributive property to multiply -2a by a^{2}+\frac{1}{6}.
a^{4}+\frac{10}{27}a-a^{3}-\frac{1}{3}a-\frac{5}{6}a^{3}+\frac{1}{9}a^{2}-\frac{1}{3}
Combine a^{3} and -2a^{3} to get -a^{3}.
a^{4}+\frac{1}{27}a-a^{3}-\frac{5}{6}a^{3}+\frac{1}{9}a^{2}-\frac{1}{3}
Combine \frac{10}{27}a and -\frac{1}{3}a to get \frac{1}{27}a.
a^{4}+\frac{1}{27}a-\frac{11}{6}a^{3}+\frac{1}{9}a^{2}-\frac{1}{3}
Combine -a^{3} and -\frac{5}{6}a^{3} to get -\frac{11}{6}a^{3}.
\left(a^{3}+\frac{10}{27}+a^{2}\right)a-2a\left(a^{2}+\frac{1}{6}\right)+\frac{-\frac{3}{5}a-\frac{3}{2}a^{4}+\frac{1}{5}a^{3}}{\frac{9}{5}a}
Add \frac{1}{27} and \frac{1}{3} to get \frac{10}{27}.
a^{4}+\frac{10}{27}a+a^{3}-2a\left(a^{2}+\frac{1}{6}\right)+\frac{-\frac{3}{5}a-\frac{3}{2}a^{4}+\frac{1}{5}a^{3}}{\frac{9}{5}a}
Use the distributive property to multiply a^{3}+\frac{10}{27}+a^{2} by a.
a^{4}+\frac{10}{27}a+a^{3}-2a\left(a^{2}+\frac{1}{6}\right)+\frac{\frac{1}{10}a\left(-15a^{3}+2a^{2}-6\right)}{\frac{9}{5}a}
Factor the expressions that are not already factored in \frac{-\frac{3}{5}a-\frac{3}{2}a^{4}+\frac{1}{5}a^{3}}{\frac{9}{5}a}.
a^{4}+\frac{10}{27}a+a^{3}-2a\left(a^{2}+\frac{1}{6}\right)+\frac{\frac{1}{10}\left(-15a^{3}+2a^{2}-6\right)}{\frac{9}{5}}
Cancel out a in both numerator and denominator.
a^{4}+\frac{10}{27}a+a^{3}-2a\left(a^{2}+\frac{1}{6}\right)+\frac{1}{18}\left(-15a^{3}+2a^{2}-6\right)
Divide \frac{1}{10}\left(-15a^{3}+2a^{2}-6\right) by \frac{9}{5} to get \frac{1}{18}\left(-15a^{3}+2a^{2}-6\right).
a^{4}+\frac{10}{27}a+a^{3}-2a\left(a^{2}+\frac{1}{6}\right)-\frac{5}{6}a^{3}+\frac{1}{9}a^{2}-\frac{1}{3}
Use the distributive property to multiply \frac{1}{18} by -15a^{3}+2a^{2}-6.
a^{4}+\frac{10}{27}a+a^{3}-2a^{3}-\frac{1}{3}a-\frac{5}{6}a^{3}+\frac{1}{9}a^{2}-\frac{1}{3}
Use the distributive property to multiply -2a by a^{2}+\frac{1}{6}.
a^{4}+\frac{10}{27}a-a^{3}-\frac{1}{3}a-\frac{5}{6}a^{3}+\frac{1}{9}a^{2}-\frac{1}{3}
Combine a^{3} and -2a^{3} to get -a^{3}.
a^{4}+\frac{1}{27}a-a^{3}-\frac{5}{6}a^{3}+\frac{1}{9}a^{2}-\frac{1}{3}
Combine \frac{10}{27}a and -\frac{1}{3}a to get \frac{1}{27}a.
a^{4}+\frac{1}{27}a-\frac{11}{6}a^{3}+\frac{1}{9}a^{2}-\frac{1}{3}
Combine -a^{3} and -\frac{5}{6}a^{3} to get -\frac{11}{6}a^{3}.