Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(a^{2}\right)^{3}-6\left(a^{2}\right)^{2}a+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a^{2}-2a\right)^{3}.
a^{6}-6\left(a^{2}\right)^{2}a+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{6}-6a^{4}a+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{6}-6a^{5}+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(4\left(a^{2}\right)^{2}+12a^{2}a+9a^{2}\right)-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a^{2}+3a\right)^{2}.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(4a^{4}+12a^{2}a+9a^{2}\right)-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(4a^{4}+12a^{3}+9a^{2}\right)-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
a^{6}-6a^{5}+12a^{4}-8a^{3}+4a^{5}+12a^{4}+9a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Use the distributive property to multiply a by 4a^{4}+12a^{3}+9a^{2}.
a^{6}-2a^{5}+12a^{4}-8a^{3}+12a^{4}+9a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Combine -6a^{5} and 4a^{5} to get -2a^{5}.
a^{6}-2a^{5}+24a^{4}-8a^{3}+9a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Combine 12a^{4} and 12a^{4} to get 24a^{4}.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Combine -8a^{3} and 9a^{3} to get a^{3}.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-a^{4}\left(a+2\right)\left(a-12\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-\frac{1}{2}\right)^{2}.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-\left(a^{5}+2a^{4}\right)\left(a-12\right)
Use the distributive property to multiply a^{4} by a+2.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-\left(a^{6}-10a^{5}-24a^{4}\right)
Use the distributive property to multiply a^{5}+2a^{4} by a-12 and combine like terms.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-a^{6}+10a^{5}+24a^{4}
To find the opposite of a^{6}-10a^{5}-24a^{4}, find the opposite of each term.
a^{6}-2a^{5}+24a^{4}+a^{3}-8a^{5}+4a^{4}-\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Use the distributive property to multiply -2a^{3} by 4a^{2}-2a+\frac{1}{4}.
a^{6}-10a^{5}+24a^{4}+a^{3}+4a^{4}-\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Combine -2a^{5} and -8a^{5} to get -10a^{5}.
a^{6}-10a^{5}+28a^{4}+a^{3}-\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Combine 24a^{4} and 4a^{4} to get 28a^{4}.
a^{6}-10a^{5}+28a^{4}+\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Combine a^{3} and -\frac{1}{2}a^{3} to get \frac{1}{2}a^{3}.
-10a^{5}+28a^{4}+\frac{1}{2}a^{3}+10a^{5}+24a^{4}
Combine a^{6} and -a^{6} to get 0.
28a^{4}+\frac{1}{2}a^{3}+24a^{4}
Combine -10a^{5} and 10a^{5} to get 0.
52a^{4}+\frac{1}{2}a^{3}
Combine 28a^{4} and 24a^{4} to get 52a^{4}.
\left(a^{2}\right)^{3}-6\left(a^{2}\right)^{2}a+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a^{2}-2a\right)^{3}.
a^{6}-6\left(a^{2}\right)^{2}a+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{6}-6a^{4}a+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{6}-6a^{5}+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(4\left(a^{2}\right)^{2}+12a^{2}a+9a^{2}\right)-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a^{2}+3a\right)^{2}.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(4a^{4}+12a^{2}a+9a^{2}\right)-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(4a^{4}+12a^{3}+9a^{2}\right)-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
a^{6}-6a^{5}+12a^{4}-8a^{3}+4a^{5}+12a^{4}+9a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Use the distributive property to multiply a by 4a^{4}+12a^{3}+9a^{2}.
a^{6}-2a^{5}+12a^{4}-8a^{3}+12a^{4}+9a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Combine -6a^{5} and 4a^{5} to get -2a^{5}.
a^{6}-2a^{5}+24a^{4}-8a^{3}+9a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Combine 12a^{4} and 12a^{4} to get 24a^{4}.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Combine -8a^{3} and 9a^{3} to get a^{3}.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-a^{4}\left(a+2\right)\left(a-12\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-\frac{1}{2}\right)^{2}.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-\left(a^{5}+2a^{4}\right)\left(a-12\right)
Use the distributive property to multiply a^{4} by a+2.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-\left(a^{6}-10a^{5}-24a^{4}\right)
Use the distributive property to multiply a^{5}+2a^{4} by a-12 and combine like terms.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-a^{6}+10a^{5}+24a^{4}
To find the opposite of a^{6}-10a^{5}-24a^{4}, find the opposite of each term.
a^{6}-2a^{5}+24a^{4}+a^{3}-8a^{5}+4a^{4}-\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Use the distributive property to multiply -2a^{3} by 4a^{2}-2a+\frac{1}{4}.
a^{6}-10a^{5}+24a^{4}+a^{3}+4a^{4}-\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Combine -2a^{5} and -8a^{5} to get -10a^{5}.
a^{6}-10a^{5}+28a^{4}+a^{3}-\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Combine 24a^{4} and 4a^{4} to get 28a^{4}.
a^{6}-10a^{5}+28a^{4}+\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Combine a^{3} and -\frac{1}{2}a^{3} to get \frac{1}{2}a^{3}.
-10a^{5}+28a^{4}+\frac{1}{2}a^{3}+10a^{5}+24a^{4}
Combine a^{6} and -a^{6} to get 0.
28a^{4}+\frac{1}{2}a^{3}+24a^{4}
Combine -10a^{5} and 10a^{5} to get 0.
52a^{4}+\frac{1}{2}a^{3}
Combine 28a^{4} and 24a^{4} to get 52a^{4}.