Evaluate
\frac{\left(104a+1\right)a^{3}}{2}
Expand
52a^{4}+\frac{a^{3}}{2}
Share
Copied to clipboard
\left(a^{2}\right)^{3}-6\left(a^{2}\right)^{2}a+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a^{2}-2a\right)^{3}.
a^{6}-6\left(a^{2}\right)^{2}a+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{6}-6a^{4}a+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{6}-6a^{5}+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(4\left(a^{2}\right)^{2}+12a^{2}a+9a^{2}\right)-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a^{2}+3a\right)^{2}.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(4a^{4}+12a^{2}a+9a^{2}\right)-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(4a^{4}+12a^{3}+9a^{2}\right)-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
a^{6}-6a^{5}+12a^{4}-8a^{3}+4a^{5}+12a^{4}+9a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Use the distributive property to multiply a by 4a^{4}+12a^{3}+9a^{2}.
a^{6}-2a^{5}+12a^{4}-8a^{3}+12a^{4}+9a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Combine -6a^{5} and 4a^{5} to get -2a^{5}.
a^{6}-2a^{5}+24a^{4}-8a^{3}+9a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Combine 12a^{4} and 12a^{4} to get 24a^{4}.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Combine -8a^{3} and 9a^{3} to get a^{3}.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-a^{4}\left(a+2\right)\left(a-12\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-\frac{1}{2}\right)^{2}.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-\left(a^{5}+2a^{4}\right)\left(a-12\right)
Use the distributive property to multiply a^{4} by a+2.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-\left(a^{6}-10a^{5}-24a^{4}\right)
Use the distributive property to multiply a^{5}+2a^{4} by a-12 and combine like terms.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-a^{6}+10a^{5}+24a^{4}
To find the opposite of a^{6}-10a^{5}-24a^{4}, find the opposite of each term.
a^{6}-2a^{5}+24a^{4}+a^{3}-8a^{5}+4a^{4}-\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Use the distributive property to multiply -2a^{3} by 4a^{2}-2a+\frac{1}{4}.
a^{6}-10a^{5}+24a^{4}+a^{3}+4a^{4}-\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Combine -2a^{5} and -8a^{5} to get -10a^{5}.
a^{6}-10a^{5}+28a^{4}+a^{3}-\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Combine 24a^{4} and 4a^{4} to get 28a^{4}.
a^{6}-10a^{5}+28a^{4}+\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Combine a^{3} and -\frac{1}{2}a^{3} to get \frac{1}{2}a^{3}.
-10a^{5}+28a^{4}+\frac{1}{2}a^{3}+10a^{5}+24a^{4}
Combine a^{6} and -a^{6} to get 0.
28a^{4}+\frac{1}{2}a^{3}+24a^{4}
Combine -10a^{5} and 10a^{5} to get 0.
52a^{4}+\frac{1}{2}a^{3}
Combine 28a^{4} and 24a^{4} to get 52a^{4}.
\left(a^{2}\right)^{3}-6\left(a^{2}\right)^{2}a+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a^{2}-2a\right)^{3}.
a^{6}-6\left(a^{2}\right)^{2}a+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{6}-6a^{4}a+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{6}-6a^{5}+12a^{2}a^{2}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(2a^{2}+3a\right)^{2}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(4\left(a^{2}\right)^{2}+12a^{2}a+9a^{2}\right)-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a^{2}+3a\right)^{2}.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(4a^{4}+12a^{2}a+9a^{2}\right)-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{6}-6a^{5}+12a^{4}-8a^{3}+a\left(4a^{4}+12a^{3}+9a^{2}\right)-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
a^{6}-6a^{5}+12a^{4}-8a^{3}+4a^{5}+12a^{4}+9a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Use the distributive property to multiply a by 4a^{4}+12a^{3}+9a^{2}.
a^{6}-2a^{5}+12a^{4}-8a^{3}+12a^{4}+9a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Combine -6a^{5} and 4a^{5} to get -2a^{5}.
a^{6}-2a^{5}+24a^{4}-8a^{3}+9a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Combine 12a^{4} and 12a^{4} to get 24a^{4}.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(2a-\frac{1}{2}\right)^{2}-a^{4}\left(a+2\right)\left(a-12\right)
Combine -8a^{3} and 9a^{3} to get a^{3}.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-a^{4}\left(a+2\right)\left(a-12\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-\frac{1}{2}\right)^{2}.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-\left(a^{5}+2a^{4}\right)\left(a-12\right)
Use the distributive property to multiply a^{4} by a+2.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-\left(a^{6}-10a^{5}-24a^{4}\right)
Use the distributive property to multiply a^{5}+2a^{4} by a-12 and combine like terms.
a^{6}-2a^{5}+24a^{4}+a^{3}-2a^{3}\left(4a^{2}-2a+\frac{1}{4}\right)-a^{6}+10a^{5}+24a^{4}
To find the opposite of a^{6}-10a^{5}-24a^{4}, find the opposite of each term.
a^{6}-2a^{5}+24a^{4}+a^{3}-8a^{5}+4a^{4}-\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Use the distributive property to multiply -2a^{3} by 4a^{2}-2a+\frac{1}{4}.
a^{6}-10a^{5}+24a^{4}+a^{3}+4a^{4}-\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Combine -2a^{5} and -8a^{5} to get -10a^{5}.
a^{6}-10a^{5}+28a^{4}+a^{3}-\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Combine 24a^{4} and 4a^{4} to get 28a^{4}.
a^{6}-10a^{5}+28a^{4}+\frac{1}{2}a^{3}-a^{6}+10a^{5}+24a^{4}
Combine a^{3} and -\frac{1}{2}a^{3} to get \frac{1}{2}a^{3}.
-10a^{5}+28a^{4}+\frac{1}{2}a^{3}+10a^{5}+24a^{4}
Combine a^{6} and -a^{6} to get 0.
28a^{4}+\frac{1}{2}a^{3}+24a^{4}
Combine -10a^{5} and 10a^{5} to get 0.
52a^{4}+\frac{1}{2}a^{3}
Combine 28a^{4} and 24a^{4} to get 52a^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}