Evaluate
-4a^{4}+9a^{2}-27
Expand
-4a^{4}+9a^{2}-27
Share
Copied to clipboard
a^{4}-3a^{2}+2-\left(\left(3a^{2}-2\right)^{2}+\left(5+2a^{2}\right)\left(5-2a^{2}\right)\right)
Use the distributive property to multiply a^{2}-1 by a^{2}-2 and combine like terms.
a^{4}-3a^{2}+2-\left(9\left(a^{2}\right)^{2}-12a^{2}+4+\left(5+2a^{2}\right)\left(5-2a^{2}\right)\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(3a^{2}-2\right)^{2}.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+\left(5+2a^{2}\right)\left(5-2a^{2}\right)\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-\left(2a^{2}\right)^{2}\right)
Consider \left(5+2a^{2}\right)\left(5-2a^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-2^{2}\left(a^{2}\right)^{2}\right)
Expand \left(2a^{2}\right)^{2}.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-2^{2}a^{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-4a^{4}\right)
Calculate 2 to the power of 2 and get 4.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+29-4a^{4}\right)
Add 4 and 25 to get 29.
a^{4}-3a^{2}+2-\left(5a^{4}-12a^{2}+29\right)
Combine 9a^{4} and -4a^{4} to get 5a^{4}.
a^{4}-3a^{2}+2-5a^{4}+12a^{2}-29
To find the opposite of 5a^{4}-12a^{2}+29, find the opposite of each term.
-4a^{4}-3a^{2}+2+12a^{2}-29
Combine a^{4} and -5a^{4} to get -4a^{4}.
-4a^{4}+9a^{2}+2-29
Combine -3a^{2} and 12a^{2} to get 9a^{2}.
-4a^{4}+9a^{2}-27
Subtract 29 from 2 to get -27.
a^{4}-3a^{2}+2-\left(\left(3a^{2}-2\right)^{2}+\left(5+2a^{2}\right)\left(5-2a^{2}\right)\right)
Use the distributive property to multiply a^{2}-1 by a^{2}-2 and combine like terms.
a^{4}-3a^{2}+2-\left(9\left(a^{2}\right)^{2}-12a^{2}+4+\left(5+2a^{2}\right)\left(5-2a^{2}\right)\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(3a^{2}-2\right)^{2}.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+\left(5+2a^{2}\right)\left(5-2a^{2}\right)\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-\left(2a^{2}\right)^{2}\right)
Consider \left(5+2a^{2}\right)\left(5-2a^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-2^{2}\left(a^{2}\right)^{2}\right)
Expand \left(2a^{2}\right)^{2}.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-2^{2}a^{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-4a^{4}\right)
Calculate 2 to the power of 2 and get 4.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+29-4a^{4}\right)
Add 4 and 25 to get 29.
a^{4}-3a^{2}+2-\left(5a^{4}-12a^{2}+29\right)
Combine 9a^{4} and -4a^{4} to get 5a^{4}.
a^{4}-3a^{2}+2-5a^{4}+12a^{2}-29
To find the opposite of 5a^{4}-12a^{2}+29, find the opposite of each term.
-4a^{4}-3a^{2}+2+12a^{2}-29
Combine a^{4} and -5a^{4} to get -4a^{4}.
-4a^{4}+9a^{2}+2-29
Combine -3a^{2} and 12a^{2} to get 9a^{2}.
-4a^{4}+9a^{2}-27
Subtract 29 from 2 to get -27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}