Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{4}-3a^{2}+2-\left(\left(3a^{2}-2\right)^{2}+\left(5+2a^{2}\right)\left(5-2a^{2}\right)\right)
Use the distributive property to multiply a^{2}-1 by a^{2}-2 and combine like terms.
a^{4}-3a^{2}+2-\left(9\left(a^{2}\right)^{2}-12a^{2}+4+\left(5+2a^{2}\right)\left(5-2a^{2}\right)\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(3a^{2}-2\right)^{2}.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+\left(5+2a^{2}\right)\left(5-2a^{2}\right)\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-\left(2a^{2}\right)^{2}\right)
Consider \left(5+2a^{2}\right)\left(5-2a^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-2^{2}\left(a^{2}\right)^{2}\right)
Expand \left(2a^{2}\right)^{2}.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-2^{2}a^{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-4a^{4}\right)
Calculate 2 to the power of 2 and get 4.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+29-4a^{4}\right)
Add 4 and 25 to get 29.
a^{4}-3a^{2}+2-\left(5a^{4}-12a^{2}+29\right)
Combine 9a^{4} and -4a^{4} to get 5a^{4}.
a^{4}-3a^{2}+2-5a^{4}+12a^{2}-29
To find the opposite of 5a^{4}-12a^{2}+29, find the opposite of each term.
-4a^{4}-3a^{2}+2+12a^{2}-29
Combine a^{4} and -5a^{4} to get -4a^{4}.
-4a^{4}+9a^{2}+2-29
Combine -3a^{2} and 12a^{2} to get 9a^{2}.
-4a^{4}+9a^{2}-27
Subtract 29 from 2 to get -27.
a^{4}-3a^{2}+2-\left(\left(3a^{2}-2\right)^{2}+\left(5+2a^{2}\right)\left(5-2a^{2}\right)\right)
Use the distributive property to multiply a^{2}-1 by a^{2}-2 and combine like terms.
a^{4}-3a^{2}+2-\left(9\left(a^{2}\right)^{2}-12a^{2}+4+\left(5+2a^{2}\right)\left(5-2a^{2}\right)\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(3a^{2}-2\right)^{2}.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+\left(5+2a^{2}\right)\left(5-2a^{2}\right)\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-\left(2a^{2}\right)^{2}\right)
Consider \left(5+2a^{2}\right)\left(5-2a^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-2^{2}\left(a^{2}\right)^{2}\right)
Expand \left(2a^{2}\right)^{2}.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-2^{2}a^{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+4+25-4a^{4}\right)
Calculate 2 to the power of 2 and get 4.
a^{4}-3a^{2}+2-\left(9a^{4}-12a^{2}+29-4a^{4}\right)
Add 4 and 25 to get 29.
a^{4}-3a^{2}+2-\left(5a^{4}-12a^{2}+29\right)
Combine 9a^{4} and -4a^{4} to get 5a^{4}.
a^{4}-3a^{2}+2-5a^{4}+12a^{2}-29
To find the opposite of 5a^{4}-12a^{2}+29, find the opposite of each term.
-4a^{4}-3a^{2}+2+12a^{2}-29
Combine a^{4} and -5a^{4} to get -4a^{4}.
-4a^{4}+9a^{2}+2-29
Combine -3a^{2} and 12a^{2} to get 9a^{2}.
-4a^{4}+9a^{2}-27
Subtract 29 from 2 to get -27.