Evaluate
a
Differentiate w.r.t. a
1
Share
Copied to clipboard
\left(a^{2}\right)^{3}\times \frac{1}{a^{5}}
Use the rules of exponents to simplify the expression.
a^{2\times 3}a^{5\left(-1\right)}
To raise a power to another power, multiply the exponents.
a^{6}a^{5\left(-1\right)}
Multiply 2 times 3.
a^{6}a^{-5}
Multiply 5 times -1.
a^{6-5}
To multiply powers of the same base, add their exponents.
a^{1}
Add the exponents 6 and -5.
a
For any term t, t^{1}=t.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}}{a^{5}})
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{1})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 5 from 6 to get 1.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Calculate a to the power of 1 and get a.
a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
a^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}